ttigh-performance computing (HPC) is essential for both traditional and emerging scientific fields, enabling scientific activities to make progress. With the development of high-performance computing, it is foreseea...ttigh-performance computing (HPC) is essential for both traditional and emerging scientific fields, enabling scientific activities to make progress. With the development of high-performance computing, it is foreseeable that exascale computing will be put into practice around 2020. As Moore's law approaches its limit, high-perfornlance computing will face severe challenges when moving from exaseale to zettascale, making tile next 10 years after 2020 a vital period to develop key HPC techniques. In this study, we discuss the challenges of enabling zettascale computing with respect to both hardware and software. We then present a perspective of fllture HPC technology evolution and revolution, leading to our main recommendations in support of zettaseale computing in the coming future.展开更多
基金Project supported by the National Key Technology R&D Program of China(No.2016YFB0200401)
文摘ttigh-performance computing (HPC) is essential for both traditional and emerging scientific fields, enabling scientific activities to make progress. With the development of high-performance computing, it is foreseeable that exascale computing will be put into practice around 2020. As Moore's law approaches its limit, high-perfornlance computing will face severe challenges when moving from exaseale to zettascale, making tile next 10 years after 2020 a vital period to develop key HPC techniques. In this study, we discuss the challenges of enabling zettascale computing with respect to both hardware and software. We then present a perspective of fllture HPC technology evolution and revolution, leading to our main recommendations in support of zettaseale computing in the coming future.