当前互联网发展日益强大,农产品电商市场的竞争愈演愈烈,用户无法从众多的产品信息中找到适合自身的产品,传统的协同过滤算法只关注用户评分,并不能及时反映用户的兴趣变化。针对这一问题,文中主要考虑通过用户行为及用户访问时间和频率...当前互联网发展日益强大,农产品电商市场的竞争愈演愈烈,用户无法从众多的产品信息中找到适合自身的产品,传统的协同过滤算法只关注用户评分,并不能及时反映用户的兴趣变化。针对这一问题,文中主要考虑通过用户行为及用户访问时间和频率,提出基于改进权值的用户兴趣推荐算法(Weight-based User Interest-Collaborative Filtering,WUI-CF)。实验结果表明,所提算法相比于传统推荐算法能更好地挖掘用户兴趣,适应用户的兴趣变化,提高推荐的精确度,能够更好地解决用户面临众多农产品信息无从挑选的问题,提高了用户的满意度。展开更多
文摘当前互联网发展日益强大,农产品电商市场的竞争愈演愈烈,用户无法从众多的产品信息中找到适合自身的产品,传统的协同过滤算法只关注用户评分,并不能及时反映用户的兴趣变化。针对这一问题,文中主要考虑通过用户行为及用户访问时间和频率,提出基于改进权值的用户兴趣推荐算法(Weight-based User Interest-Collaborative Filtering,WUI-CF)。实验结果表明,所提算法相比于传统推荐算法能更好地挖掘用户兴趣,适应用户的兴趣变化,提高推荐的精确度,能够更好地解决用户面临众多农产品信息无从挑选的问题,提高了用户的满意度。