Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure...Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure a priori bounds on the derivative of solutions to the differential inclusion. These a priori bound results are then applied, in conjunction with appropriate topological methods, to prove some new existence theorems for solutions to systems of BVPs for differential inclusions. The new conditions allow of the treatment of systems of BVPs without growth restrictions.展开更多
Nonlinear integral and discrete inequalities are obtained. which are related to some recent results of B. C. Pachpatte in [1] given therein as generalizations of Ou-Iang’s integral inequality[2]. As special cases, so...Nonlinear integral and discrete inequalities are obtained. which are related to some recent results of B. C. Pachpatte in [1] given therein as generalizations of Ou-Iang’s integral inequality[2]. As special cases, some new inequalities with the power nonlinearity are derived from the main results. To show the contribution of our results, boundedness of solutions to certain nonlinear difference equation is also considered.展开更多
Some new integral and discrete inequalities with power nonlinearity are established. Two recent results of B.G. Pachpatte are improved by some particularcorollaries of our results. Application examples are also indica...Some new integral and discrete inequalities with power nonlinearity are established. Two recent results of B.G. Pachpatte are improved by some particularcorollaries of our results. Application examples are also indicated.展开更多
In this article, the authors establish some new nonlinear difference inequalities in two independent variables, which generalize some existing results and can be used as handy tools in the study of qualitative as well...In this article, the authors establish some new nonlinear difference inequalities in two independent variables, which generalize some existing results and can be used as handy tools in the study of qualitative as well as quantitative properties of solutions of certain classes of difference equations.展开更多
Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also der...Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also derived.An example is given to show that the bound in Theorem 1 is not improvable.展开更多
A new discrete inequality with the power nonlinearity is obtained which unifies and generalizes some known results due to B.G.Pachpatte. A certain initial value problem of a sum-difference equation is also given to co...A new discrete inequality with the power nonlinearity is obtained which unifies and generalizes some known results due to B.G.Pachpatte. A certain initial value problem of a sum-difference equation is also given to convey the usefulness of the inequality obtained.展开更多
基金the Australian Research Council's Discovery Projects(DP0450752)Linkage International(LX0561259)
文摘Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure a priori bounds on the derivative of solutions to the differential inclusion. These a priori bound results are then applied, in conjunction with appropriate topological methods, to prove some new existence theorems for solutions to systems of BVPs for differential inclusions. The new conditions allow of the treatment of systems of BVPs without growth restrictions.
基金The project is supported in part by the NSF of Guangdong Province (Grnat No. 940651) the SF of Key Discipline of the State Council Office of Overseas Chinese Affairs of China (Grant No.93-93-6)
文摘Nonlinear integral and discrete inequalities are obtained. which are related to some recent results of B. C. Pachpatte in [1] given therein as generalizations of Ou-Iang’s integral inequality[2]. As special cases, some new inequalities with the power nonlinearity are derived from the main results. To show the contribution of our results, boundedness of solutions to certain nonlinear difference equation is also considered.
文摘Some new integral and discrete inequalities with power nonlinearity are established. Two recent results of B.G. Pachpatte are improved by some particularcorollaries of our results. Application examples are also indicated.
基金a HKU Seed grant the Research Grants Council of the Hong Kong SAR(HKU7016/07P)
文摘In this article, the authors establish some new nonlinear difference inequalities in two independent variables, which generalize some existing results and can be used as handy tools in the study of qualitative as well as quantitative properties of solutions of certain classes of difference equations.
基金Supported by the Natural Science Foundation of Guangdong Pronvince( 0 1 1 471 ) and Education Bu-reau( 0 1 76)
文摘Some new inequalities involving improper integrals are established in the paper which generalize the related results due to Pachpatte and Rodrigues.Discrete analogues of the integral inequalities obtained are also derived.An example is given to show that the bound in Theorem 1 is not improvable.
文摘A new discrete inequality with the power nonlinearity is obtained which unifies and generalizes some known results due to B.G.Pachpatte. A certain initial value problem of a sum-difference equation is also given to convey the usefulness of the inequality obtained.