期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
GENERALIZED DIFFERENCE METHODS ON ARBITRARYQUADRILATERAL NETWORKS 被引量:23
1
作者 Yong-hai Li Rong-hua Li(Institute of Mathematics, Jinn University, Changchun 130023, China) 《Journal of Computational Mathematics》 SCIE CSCD 1999年第6期653-672,共20页
This paper considers the generalized difference methods on arbitrary networks for Poisson equations. Convergence order estimates are proved based on some a priori estimates. A supporting numerical example is provided.
关键词 quadrilateral elements dual grids bilinear functions generalized difference methods priori estimates error estimates
原文传递
一类非线性抛物最优控制问题的有限元误差估计 被引量:3
2
作者 付红斐 芮洪兴 《数学物理学报(A辑)》 CSCD 北大核心 2010年第6期1542-1554,共13页
该文对一类非线性抛物最优控制问题给出了有限元逼近格式,并讨论了两种不同类型的控制约束集.文中对状态和伴随状态变量采用了线性连续函数离散,而控制变量则由分片常函数近似.得到了控制和状态逼近的先验误差估计■(h_U+h+k),这里h_U与... 该文对一类非线性抛物最优控制问题给出了有限元逼近格式,并讨论了两种不同类型的控制约束集.文中对状态和伴随状态变量采用了线性连续函数离散,而控制变量则由分片常函数近似.得到了控制和状态逼近的先验误差估计■(h_U+h+k),这里h_U与h分别表示控制和状态的空间网格步长,k表示时间步长.数值试验表明了算法的有效性. 展开更多
关键词 有限元逼近 非线性抛物最优控制 先验误差估计
下载PDF
抛物最优控制问题质量集中P_0~2-P_1混合有限元方法的先验误差估计 被引量:2
3
作者 徐长玲 《北华大学学报(自然科学版)》 CAS 2019年第3期292-298,共7页
考虑了线性抛物最优控制问题的质量集中P_0~2-P_1混合有限元逼近.质量集中法用来处理离散化状态方程,状态和对偶状态采用P_0~2-P_1混合元逼近,控制变量采用分片常数函数逼近.针对障碍型控制问题,得到了所有变量的先验误差估计.
关键词 抛物方程 最优控制 质量集中 先验误差估计 P0^2-P1混合有限元
下载PDF
半线性椭圆问题的非精确自适应有限元方法
4
作者 张庆敏 郭利明 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2021年第1期11-15,144,共6页
考虑一类半线性椭圆问题的非精确自适应有限元方法.该算法在初始网格需要精确求解,而在其余网格只需要对上一步的近似解进行一次牛顿更新.利用有限元方法的精确解和非精确解之间的超逼近性质,给出该方法的先验和后验误差估计,最后通过... 考虑一类半线性椭圆问题的非精确自适应有限元方法.该算法在初始网格需要精确求解,而在其余网格只需要对上一步的近似解进行一次牛顿更新.利用有限元方法的精确解和非精确解之间的超逼近性质,给出该方法的先验和后验误差估计,最后通过具体算例来验证该理论的正确性和该方法的有效性. 展开更多
关键词 非精确 自适应有限元 先验误差估计 后验误差估计 半线性
下载PDF
非线性二次最优控制问题的插值系数混合有限元法收敛性
5
作者 刘艳萍 熊之光 《湘南学院学报》 2014年第5期15-19,共5页
研究了用混合有限元法逼近由非线性椭圆方程控制的一般凸最优控制问题,并将插值系数的思想用于问题的非线性项用处理,得到了一种简单而高效的数值方法——插值系数混合有限元法,并对状态和控制变量分别推导出了其最优阶的先验误差估计.
关键词 非线性最优控制问题 插值系数法 混合有限元法 先验误差估计
下载PDF
Error Estimates of a New Lowest Order Mixed Finite Element Approximation for Semilinear Optimal Control Problems
6
作者 Zuliang Lu Dayong Liu 《数学计算(中英文版)》 2013年第3期62-67,共6页
关键词 混合有限元方法 最优控制问题 先验误差估计 有限元逼近 半线性 低阶 有限元空间 近似逼近
下载PDF
MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS 被引量:1
7
作者 Tianliang Hou Yanping Chen 《Journal of Computational Mathematics》 SCIE CSCD 2015年第2期158-178,共21页
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap- proximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous fini... In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap- proximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time dis- cretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We de- rive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori L2(O, T; L2(Ω)) error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates. 展开更多
关键词 A priori error estimates A posteriori error estimates Mixed finite element Discontinuous Galerkin method Parabolic control problems.
原文传递
A SPARSE GRID STOCHASTIC COLLOCATION AND FINITE VOLUME ELEMENT METHOD FOR CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY RANDOM ELLIPTIC EQUATIONS 被引量:1
8
作者 Liang Ge Tongjun Sun 《Journal of Computational Mathematics》 SCIE CSCD 2018年第2期310-330,共21页
In this paper, a hybird approximation scheme for an optimal control problem governed by an elliptic equation with random field in its coefficients is considered. The random coefficients are smooth in the physical spac... In this paper, a hybird approximation scheme for an optimal control problem governed by an elliptic equation with random field in its coefficients is considered. The random coefficients are smooth in the physical space and depend on a large number of random variables in the probability space. The necessary and sufficient optimality conditions for the optimal control problem are obtained. The scheme is established to approximate the optimality system through the discretization by using finite volume element method for the spatial space and a sparse grid stochastic collocation method based on the Smolyak approximation for the probability space, respectively. This scheme naturally leads to the discrete solutions of an uncoupled deterministic problem. The existence and uniqueness of the discrete solutions are proved. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Optimal control problem Random elliptic equations Finite volume element Sparse grid Smolyak approximation A priori error estimates.
原文传递
A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS
9
作者 Hongfei Hongxing Rui 《Journal of Computational Mathematics》 SCIE CSCD 2015年第2期113-127,共15页
In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-... In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings. 展开更多
关键词 Optimal control Least-squares mixed finite element methods First-order el-liptic system A priori error estimates.
原文传递
A CHARACTERISTIC FINITE ELEMENT METHOD FOR CONSTRAINED CONVECTION-DIFFUSION-REACTION OPTIMAL CONTROL PROBLEMS
10
作者 Hongfei Fu Hongxing Rui Hui Guo 《Journal of Computational Mathematics》 SCIE CSCD 2013年第1期88-106,共19页
In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optima... In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis. 展开更多
关键词 Characteristic finite element method Constrained optimal control Convection-diffusion-reaction equations Pointwise inequality constraints A priori error estimates.
原文传递
OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS
11
作者 C. Brennecke A. Linke +1 位作者 C. Merdon J. Schoberl 《Journal of Computational Mathematics》 SCIE CSCD 2015年第2期191-208,共18页
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, ... Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case. 展开更多
关键词 Variational crime Crouzeix-Raviart finite element Divergence-free mixed me-thod Incompressible Navier-Stokes equations A priori error estimates.
原文传递
自适应有限元方法在线性椭圆方程的应用
12
作者 汤雁 《天津大学学报》 EI CAS CSCD 1999年第3期329-332,共4页
本文完整给出在凸多边形域上关于Poisson方程的先验及后验误差估计及基于后验误差估计的自适应有限元方法,从理论上证明了这种自动误差控制的方法是可靠的,有效的。
关键词 自适应有限元 检验误差估计 椭圆型方程
下载PDF
Finite Element Analysis of the Ramberg-Osgood Bar
13
作者 Dongming Wei Mohamed B. M. Elgindi 《American Journal of Computational Mathematics》 2013年第3期211-216,共6页
In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to ... In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis. 展开更多
关键词 Nonlinear Two Point Boundary Value Problem Ramberg-Osgood AXIAL BAR EXISTENCE and UNIQUENESS of Solutions Finite Element Analysis CONVERGENCE and a Priori Error ESTIMATES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部