A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(...A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(-1)(S-Hid) has constant eigenvalues. Here {e_i} is a local orthonormal basis for I=dx·dx with dual basis {θ_i}, II=∑_(ij)h_(ij)θ_iθ_J is the second fundamental form, H=1/n∑_i h_(ij), ρ~2=n/(n-1)(‖II‖~2-nH^2) and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S^(n+1) is a Mbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in S^(n+1) with two distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametric hypersurface embedded in S^(n+1) can take only the values 2, 3, 4, 6.展开更多
In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A...In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.展开更多
Let x be an m-dimensional umbilic-free hypersurface in an (m+1)-dimensional unit sphere Sm+l (m≥3). In this paper, we classify and explicitly express the hypersurfaces with two distinct princi- pal curvatures a...Let x be an m-dimensional umbilic-free hypersurface in an (m+1)-dimensional unit sphere Sm+l (m≥3). In this paper, we classify and explicitly express the hypersurfaces with two distinct princi- pal curvatures and closed MSbius form, and then we characterize and classify conformally flat hypersurfaces of dimension larger than 3.展开更多
In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isopa...In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isoparametric hypersurfaces,respectively.Finally,we classify the hypersurfaces with at most two distinct constant principal curvatures,as well as those with three distinct constant principal curvatures under some additional conditions.展开更多
基金Partially supported by NSFCPartially supported by TU Berlin, DFG, SRF, SEM+2 种基金Partially supported by Qiushi Award. 973 Project, RFDPthe Jiechu GrantPartially supported by DFG, NSFC and Qiushi Award
文摘A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(-1)(S-Hid) has constant eigenvalues. Here {e_i} is a local orthonormal basis for I=dx·dx with dual basis {θ_i}, II=∑_(ij)h_(ij)θ_iθ_J is the second fundamental form, H=1/n∑_i h_(ij), ρ~2=n/(n-1)(‖II‖~2-nH^2) and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S^(n+1) is a Mbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in S^(n+1) with two distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametric hypersurface embedded in S^(n+1) can take only the values 2, 3, 4, 6.
基金Project supported by the National Natural Science Foundation of China(11972120,11472082,12032016)。
文摘In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.
基金supported by National Natural Science Foundation of China (Grant Nos.10561010, 10861013)
文摘Let x be an m-dimensional umbilic-free hypersurface in an (m+1)-dimensional unit sphere Sm+l (m≥3). In this paper, we classify and explicitly express the hypersurfaces with two distinct princi- pal curvatures and closed MSbius form, and then we characterize and classify conformally flat hypersurfaces of dimension larger than 3.
基金supported by National Natural Science Foundation of China (Grant Nos. 11831005, 12061131014 and 12171437)China Postdoctoral Science Foundation (Grant No. 2022M721871)
文摘In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isoparametric hypersurfaces,respectively.Finally,we classify the hypersurfaces with at most two distinct constant principal curvatures,as well as those with three distinct constant principal curvatures under some additional conditions.