The self-priming process of a pump involves a complex gas-liquid two-phase flow.Studying the distribution of gas and water and the evolution of their flow in the pump is of great importance to optimize this process an...The self-priming process of a pump involves a complex gas-liquid two-phase flow.Studying the distribution of gas and water and the evolution of their flow in the pump is of great importance to optimize this process and shorten the pump self-priming time.In the present study,a standard k-εturbulence model and a multiphase flow model have been used to simulate the self-priming pump process considering four different reflux hole areas.A comparison of the distribution of air and water distribution on the axial surface and inside the volume have been carried out for the different considered cases.The pattern formed by the streamlines at different times during the whole self-priming process has also been investigated.The results show that the velocity at the trailing edge of the impeller outlet is the largest.The flow in the pump cavity is.complicated by the formation of vortices.The number,shape and location of the vortices change depending on the considered configuration.展开更多
The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied...The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied for simulating the self-priming process.Meanwhile,the changes of motor speed and self-priming height were considered in the simulation.The overall transient two-phase flow features and water level distributions were mapped.Results showed that the self-priming process was divided into three stages.The liquid level in inlet-pipe rose in oscillation during self-priming process.The variations of water level during self-priming process of numerical simulation and test result agreed well.The inlet-pipe(Ver)was filled at 22 s and 24 s respectively numerically and experimentally.The bubble cloud circulated in the volute during middle stage of self-priming process,and breakup into smaller bubbles by shear force and tongue,and then discharged into chamber.The bubbles in the outlet-pipe mainly included bubbly flow and slug flow at the last stage of self-priming process,which is morphologically consistent with the test results.Also,during the self-priming process,the reflux liquid was pressed by blades and fully mixed with gas;that is the way to realizing the function of self-priming.展开更多
In order to investigate the self-priming process of the self-priming pump,an unsteady simulation was conducted where the Navier-Stokes equations were used with the Lagrangian-Eularian mo-del.In course of this investig...In order to investigate the self-priming process of the self-priming pump,an unsteady simulation was conducted where the Navier-Stokes equations were used with the Lagrangian-Eularian mo-del.In course of this investigation,the volume fractions,pressure distribution and self-priming time were carried out.By analyzing the volume,velocity and pressure distribution of the gas-liquid two-phase flow at different time,the two-phase content via the variation law of the two-phase flow in the pump was carried out.By monitoring and analyzing the gas-liquid flow at the outlet of the pump,the self-priming time and crucial periods were given.Two phenomena were mainly characterized by the self-priming process such as the gas-liquid mixing and separation,which occur in the early stage of self-priming process.During that period the gas-liquid mixing clouds appear on the outer edge of the impeller,and the instantaneous void fraction at the inlet and outlet of the impeller decreases obviously.It was also established from the transient study that the gas has a major influence on the hydraulic performance of the pump at the early stage of operation.To increase the usage of self-priming pump and to also understand the energy conversion of the pump,it is very essential to investigate and establish the basic working principle of the self-priming pump.展开更多
文摘The self-priming process of a pump involves a complex gas-liquid two-phase flow.Studying the distribution of gas and water and the evolution of their flow in the pump is of great importance to optimize this process and shorten the pump self-priming time.In the present study,a standard k-εturbulence model and a multiphase flow model have been used to simulate the self-priming pump process considering four different reflux hole areas.A comparison of the distribution of air and water distribution on the axial surface and inside the volume have been carried out for the different considered cases.The pattern formed by the streamlines at different times during the whole self-priming process has also been investigated.The results show that the velocity at the trailing edge of the impeller outlet is the largest.The flow in the pump cavity is.complicated by the formation of vortices.The number,shape and location of the vortices change depending on the considered configuration.
基金supported by the National Natural Science Foundation of China(51609212,51606167,51779226 and 51976193)。
文摘The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied for simulating the self-priming process.Meanwhile,the changes of motor speed and self-priming height were considered in the simulation.The overall transient two-phase flow features and water level distributions were mapped.Results showed that the self-priming process was divided into three stages.The liquid level in inlet-pipe rose in oscillation during self-priming process.The variations of water level during self-priming process of numerical simulation and test result agreed well.The inlet-pipe(Ver)was filled at 22 s and 24 s respectively numerically and experimentally.The bubble cloud circulated in the volute during middle stage of self-priming process,and breakup into smaller bubbles by shear force and tongue,and then discharged into chamber.The bubbles in the outlet-pipe mainly included bubbly flow and slug flow at the last stage of self-priming process,which is morphologically consistent with the test results.Also,during the self-priming process,the reflux liquid was pressed by blades and fully mixed with gas;that is the way to realizing the function of self-priming.
基金supported by the National Natural Science Foundation of China (Grant No.51879120)。
文摘In order to investigate the self-priming process of the self-priming pump,an unsteady simulation was conducted where the Navier-Stokes equations were used with the Lagrangian-Eularian mo-del.In course of this investigation,the volume fractions,pressure distribution and self-priming time were carried out.By analyzing the volume,velocity and pressure distribution of the gas-liquid two-phase flow at different time,the two-phase content via the variation law of the two-phase flow in the pump was carried out.By monitoring and analyzing the gas-liquid flow at the outlet of the pump,the self-priming time and crucial periods were given.Two phenomena were mainly characterized by the self-priming process such as the gas-liquid mixing and separation,which occur in the early stage of self-priming process.During that period the gas-liquid mixing clouds appear on the outer edge of the impeller,and the instantaneous void fraction at the inlet and outlet of the impeller decreases obviously.It was also established from the transient study that the gas has a major influence on the hydraulic performance of the pump at the early stage of operation.To increase the usage of self-priming pump and to also understand the energy conversion of the pump,it is very essential to investigate and establish the basic working principle of the self-priming pump.