期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application in prestiction friction compensation for angular velocity loop of inertially stabilized platforms 被引量:5
1
作者 Zhang Zhiyong Li Zhiqiang +2 位作者 Zhou Qingkun Zhang Lianchao Fan Dapeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期655-662,共8页
Abstract To overcome the influence of the nonlinear friction on the gimbaled servo-system of an inertial stabilized platforms (ISPs) with DC motor direct-drive, the methods of modeling and compensation of the nonlin... Abstract To overcome the influence of the nonlinear friction on the gimbaled servo-system of an inertial stabilized platforms (ISPs) with DC motor direct-drive, the methods of modeling and compensation of the nonlinear friction are proposed. Firstly, the inapplicability of LuGre model when trying to interpret the backward angular displacement in the prestiction regime is observed experimentally and the reason is deduced theoretically. Then, based on the dynamic model of direct-drive ISPs, a modified LuGre model is proposed to describe the characteristic of the friction in the prestiction regime. Furthermore, the state switch condition of the three friction regimes including presliding, gross sliding and prestiction is presented. Finally, a composite compensation controller including a nonlinear friction observer and a feedforward compensator based on the novel LuGre model is designed to restrain the nonlinear friction and to improve the control precision. Experimental results indicate that compared with those of the conventional proportion-integrationdifferentiation (PID) control method and the PID plus LuGre model-based friction compensation method, the dwell-time has decreased from 0.2 s to almost 0 s, the position error decreased to 86.7% and the peak-to-peak value of position error decreased to 80% after the novel compensation controller is added. It concludes that the composite compensation controller can greatly improve the control precision of the dynamic sealed ISPs. 展开更多
关键词 Closed loop control systems Friction compensation Inertially stabilized platforms prestiction STICTION
原文传递
Prestiction friction compensation in direct-drive mechatronics systems 被引量:1
2
作者 黎志强 周擎坤 +2 位作者 张智永 张连超 范大鹏 《Journal of Central South University》 SCIE EI CAS 2013年第11期3031-3041,共11页
LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensi... LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%. 展开更多
关键词 prestiction friction LuGre model multilevel coordinate search friction compensation inertially stabilization platforms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部