期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
1
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 Random FOREST ALGORITHM Support Vector Machine ALGORITHM β-Hairpin MOTIF INCREMENT of Diversity SCORING Function predicted secondary structure information
下载PDF
随机森林和支持向量机算法在β-发夹模体预测中的比较
2
作者 贾少春 《温州大学学报(自然科学版)》 2016年第3期26-33,共8页
基于对β-发夹模体的预测探索,本文使用随机森林和支持向量机两种算法,对ArchDB40数据库及自建数据集中的β-发夹模体进行预测.对于同一数据集,在特征参数和检验方法均相同的情况下,随机森林算法的预测精度要高于支持向量机算法.此外,... 基于对β-发夹模体的预测探索,本文使用随机森林和支持向量机两种算法,对ArchDB40数据库及自建数据集中的β-发夹模体进行预测.对于同一数据集,在特征参数和检验方法均相同的情况下,随机森林算法的预测精度要高于支持向量机算法.此外,由于随机森林算法在参数维数较高的情况下不会发生过拟合现象,所以本文采用了将高维特征参数输入随机森林算法的方法来预测β-发夹,得到了较好的预测效果:对ArchDB40数据库中的β-发夹进行预测,其5-交叉检验的预测精度和相关系数分别是83.3%和0.59;对自建数据集中的β-发夹进行预测,其5-交叉检验的预测精度和相关系数分别是85.2%和0.62. 展开更多
关键词 随机森林算法 支持向量机算法 Β-发夹模体 离散增量 预测的二级结构信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部