Precisely predicting the fatigue life of taut-wire mooring systems has become an interesting and important problem for scientists and engineers since there are still difficulties in the inspection and maintenance of m...Precisely predicting the fatigue life of taut-wire mooring systems has become an interesting and important problem for scientists and engineers since there are still difficulties in the inspection and maintenance of mooring lines in a rough sea environment especially in deep waters. In this paper, a comprehensive fatigue analysis is performed for a polyester taut-wire mooring system of an FPSO based on the time domain dynamic theory, rainflow cycle counting method and linear damage accumulation rule of Palmgren-Miner. Three influential factors in the fatigue analysis including the pre-tension, dynamic stiffness and T-N curve are investigated in detail. Two polyester T-N curves, one is from the DNV- 0S-E301 and the other is from the API-RP-2SM, are adopted in the calculation. The fatigue analysis of the mooting system after one-line failure is also carried out. The calculation results indicate that the fatigue life is significantly affected by the T-N curve. The fatigue life decreases with increasing pre-tension, and is largely reduced if taking into account the dynamic stiffness caused by cyclic loading. The analysis also proves that one-line failure has remarkable effects on the fatigue lives of other mooting lines. The present parametric and comparative study is believed to be meaningful to further understanding of the taut-wire mooting system for deepwater applications.展开更多
In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences...In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.展开更多
It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what c...It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what currently exists.However, this paper contends that reinforcing roof bolting systems can be further refined by considering both the specific manner by which horizontally bedded roof strata loses its natural self-supporting ability and the specific means by which reinforcing roof bolts act to promote or retain this natural self-supporting ability.The Australian coal industry has insisted on minimising bolt-hole diameter to maximise load transfer and on targeting full-encapsulation by any means necessary for many years.This has led to a significant, albeit unintended, consequence in terms of overall roof bolting effectiveness, namely increased resin pressures during bolt installation and the associated potential for opening bedding planes that may have, otherwise, remained closed during the bolt installation process.Given that the natural self-supporting ability of roof strata is strongly linked to whether bedding planes are open or closed, logically, minimising resin pressures should be a significant benefit.This paper focuses primarily on three key issues that relate directly to the function of the roof bolting system itself:(1) the importance of proper resin mixing in the context of maximising load transfer strength and stiffness,(2) the importance of minimising resin pressures developed during bolt installation, and(3) the importance of maximising the effectiveness of the available bolt pre-tension.All mine operators should be invested in improving the individual effectiveness of each installed roof bolt, even by relatively small incremental amounts, so this is an important topic for discussion within the mining community.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China (Grant No. 50639030)the National High Technology Research and Development Program of China (863 Program, Grant No. 2006AA09Z348)
文摘Precisely predicting the fatigue life of taut-wire mooring systems has become an interesting and important problem for scientists and engineers since there are still difficulties in the inspection and maintenance of mooring lines in a rough sea environment especially in deep waters. In this paper, a comprehensive fatigue analysis is performed for a polyester taut-wire mooring system of an FPSO based on the time domain dynamic theory, rainflow cycle counting method and linear damage accumulation rule of Palmgren-Miner. Three influential factors in the fatigue analysis including the pre-tension, dynamic stiffness and T-N curve are investigated in detail. Two polyester T-N curves, one is from the DNV- 0S-E301 and the other is from the API-RP-2SM, are adopted in the calculation. The fatigue analysis of the mooting system after one-line failure is also carried out. The calculation results indicate that the fatigue life is significantly affected by the T-N curve. The fatigue life decreases with increasing pre-tension, and is largely reduced if taking into account the dynamic stiffness caused by cyclic loading. The analysis also proves that one-line failure has remarkable effects on the fatigue lives of other mooting lines. The present parametric and comparative study is believed to be meaningful to further understanding of the taut-wire mooting system for deepwater applications.
基金co-supported by the National Natural Science Foundation of China (No.51575262)the China Postdoctoral Science Foundation (No.2015M571754)the Aeronautical Science Foundation of China (No.2015ZB52008)
文摘In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.
文摘It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what currently exists.However, this paper contends that reinforcing roof bolting systems can be further refined by considering both the specific manner by which horizontally bedded roof strata loses its natural self-supporting ability and the specific means by which reinforcing roof bolts act to promote or retain this natural self-supporting ability.The Australian coal industry has insisted on minimising bolt-hole diameter to maximise load transfer and on targeting full-encapsulation by any means necessary for many years.This has led to a significant, albeit unintended, consequence in terms of overall roof bolting effectiveness, namely increased resin pressures during bolt installation and the associated potential for opening bedding planes that may have, otherwise, remained closed during the bolt installation process.Given that the natural self-supporting ability of roof strata is strongly linked to whether bedding planes are open or closed, logically, minimising resin pressures should be a significant benefit.This paper focuses primarily on three key issues that relate directly to the function of the roof bolting system itself:(1) the importance of proper resin mixing in the context of maximising load transfer strength and stiffness,(2) the importance of minimising resin pressures developed during bolt installation, and(3) the importance of maximising the effectiveness of the available bolt pre-tension.All mine operators should be invested in improving the individual effectiveness of each installed roof bolt, even by relatively small incremental amounts, so this is an important topic for discussion within the mining community.