【目的】为了解决开源非结构化军事领域数据的命名实体识别问题。【方法】本文提出基于预训练模型(Bidirectional Encoder Representations from Transformers,BERT)的命名实体识别方法,首先基于预训练BERT模型生成自建开源军事语料的...【目的】为了解决开源非结构化军事领域数据的命名实体识别问题。【方法】本文提出基于预训练模型(Bidirectional Encoder Representations from Transformers,BERT)的命名实体识别方法,首先基于预训练BERT模型生成自建开源军事语料的动态特征词向量的字符表示,然后基于双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)完成语义特征提取,最后利用条件随机场模型(Conditional Random Fields,CRF)选出最优标签序列完成实体识别的任务。【结果】模型在自建的开源军事数据集上的实验结果表明,相较于基于统计模型和神经网络的方法,本文提出的方法可使准确率提升8%,F值提高11%,召回率提高10%。【局限】由于现阶段在开源军事领域中公开标注数据集较为缺乏,所以未能在开源军事语料上训练BERT模型。【结论】但本文提出的基于预训练模型的开源军事命名实体识别方法,在一定程度上解决了边界划分问题,同时解决了在数据集不足的情况下实体识别任务表现不佳的问题。展开更多
近年来,网络安全威胁日益增多,数据驱动的安全智能分析成为网络安全领域研究的热点。特别是以知识图谱为代表的人工智能技术可为多源异构威胁情报数据中的复杂网络攻击检测和未知网络攻击检测提供支撑。网络安全实体识别是威胁情报知识...近年来,网络安全威胁日益增多,数据驱动的安全智能分析成为网络安全领域研究的热点。特别是以知识图谱为代表的人工智能技术可为多源异构威胁情报数据中的复杂网络攻击检测和未知网络攻击检测提供支撑。网络安全实体识别是威胁情报知识图谱构建的基础。开放网络文本数据中的安全实体构成非常复杂,导致传统的深度学习方法难以准确识别。在BERT(pre-training of deep bidirectional transformers)预训练语言模型的基础上,提出一种基于残差空洞卷积神经网络和条件随机场的网络安全实体识别模型BERT-RDCNN-CRF。通过BERT模型训练字符级特征向量表示,结合残差卷积与空洞神经网络模型有效提取安全实体的重要特征,最后通过CRF获得每一个字符的BIO标注。在所构建的大规模网络安全实体标注数据集上的实验表明,所提方法取得了比LSTM-CRF模型、BiLSTM-CRF模型和传统的实体识别模型更好的效果。展开更多
文摘【目的】为了解决开源非结构化军事领域数据的命名实体识别问题。【方法】本文提出基于预训练模型(Bidirectional Encoder Representations from Transformers,BERT)的命名实体识别方法,首先基于预训练BERT模型生成自建开源军事语料的动态特征词向量的字符表示,然后基于双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)完成语义特征提取,最后利用条件随机场模型(Conditional Random Fields,CRF)选出最优标签序列完成实体识别的任务。【结果】模型在自建的开源军事数据集上的实验结果表明,相较于基于统计模型和神经网络的方法,本文提出的方法可使准确率提升8%,F值提高11%,召回率提高10%。【局限】由于现阶段在开源军事领域中公开标注数据集较为缺乏,所以未能在开源军事语料上训练BERT模型。【结论】但本文提出的基于预训练模型的开源军事命名实体识别方法,在一定程度上解决了边界划分问题,同时解决了在数据集不足的情况下实体识别任务表现不佳的问题。
文摘近年来,网络安全威胁日益增多,数据驱动的安全智能分析成为网络安全领域研究的热点。特别是以知识图谱为代表的人工智能技术可为多源异构威胁情报数据中的复杂网络攻击检测和未知网络攻击检测提供支撑。网络安全实体识别是威胁情报知识图谱构建的基础。开放网络文本数据中的安全实体构成非常复杂,导致传统的深度学习方法难以准确识别。在BERT(pre-training of deep bidirectional transformers)预训练语言模型的基础上,提出一种基于残差空洞卷积神经网络和条件随机场的网络安全实体识别模型BERT-RDCNN-CRF。通过BERT模型训练字符级特征向量表示,结合残差卷积与空洞神经网络模型有效提取安全实体的重要特征,最后通过CRF获得每一个字符的BIO标注。在所构建的大规模网络安全实体标注数据集上的实验表明,所提方法取得了比LSTM-CRF模型、BiLSTM-CRF模型和传统的实体识别模型更好的效果。