We are concerned with the shock regular reflection configurations of unsteady global solutions for a plane shock hitting a symmetric straight wedge.It has been known that patterns of the shock reflection are various a...We are concerned with the shock regular reflection configurations of unsteady global solutions for a plane shock hitting a symmetric straight wedge.It has been known that patterns of the shock reflection are various and complicated,including the regular and the Mach reflection.Most of the fundamental issues for the shock reflection have not been understood.Recently,there are great progress on the mathematical theory of the shock regular reflection problem,especially for the global existence,uniqueness,and structural stability of solutions.In this paper,we show that there are two more possible configurations of the shock regular reflection besides known four configurations.We also give a brief proof of the global existence of solutions.展开更多
In this paper, the effects of the passive technique by using the slotted wall on the characteristics of a condensation shock wave generated in a Prandtl-Meyer flow were investigated experimentally. Furthermore, in ord...In this paper, the effects of the passive technique by using the slotted wall on the characteristics of a condensation shock wave generated in a Prandtl-Meyer flow were investigated experimentally. Furthermore, in order to clarify the variation of condensation properties in the flow field, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration. Baldwin-Lomax model was used as a turbulence model in the computations. From experimental results, it was found that the shock strength on the slotted wall became weak in comparison with no passive case (solid wall), and the present passive technique was the most effective when a foot of the condensation shock wave was located at the middle of slotted wall. Furthermore, it was confirmed numerically that the passive technique was also effective for the unsteady condensation shock wave.展开更多
According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm sh...According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.展开更多
When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains alway...When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of fmite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.展开更多
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remai...When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.展开更多
基金supported by the National Natural Science Foundation of China(Grant no.11761077)the NSF of Yunnan province of China(2019FY003007)the Program for Innovative Research Team in Universities of Yunnan Province of China.
文摘We are concerned with the shock regular reflection configurations of unsteady global solutions for a plane shock hitting a symmetric straight wedge.It has been known that patterns of the shock reflection are various and complicated,including the regular and the Mach reflection.Most of the fundamental issues for the shock reflection have not been understood.Recently,there are great progress on the mathematical theory of the shock regular reflection problem,especially for the global existence,uniqueness,and structural stability of solutions.In this paper,we show that there are two more possible configurations of the shock regular reflection besides known four configurations.We also give a brief proof of the global existence of solutions.
文摘In this paper, the effects of the passive technique by using the slotted wall on the characteristics of a condensation shock wave generated in a Prandtl-Meyer flow were investigated experimentally. Furthermore, in order to clarify the variation of condensation properties in the flow field, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration. Baldwin-Lomax model was used as a turbulence model in the computations. From experimental results, it was found that the shock strength on the slotted wall became weak in comparison with no passive case (solid wall), and the present passive technique was the most effective when a foot of the condensation shock wave was located at the middle of slotted wall. Furthermore, it was confirmed numerically that the passive technique was also effective for the unsteady condensation shock wave.
文摘According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.
文摘When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of fmite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.
文摘When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.