The boundary layer flow of viscous incompressible fluid over a stretching cylinder has been considered to study flow field and temperature field. Due to non-linearity, a numerical approach called Keller-box technique ...The boundary layer flow of viscous incompressible fluid over a stretching cylinder has been considered to study flow field and temperature field. Due to non-linearity, a numerical approach called Keller-box technique has been used to compute the values of velocity function f and temperature field at different points of dynamic region. The expressions for skin friction and Nusselt number have also been obtained. The dependence of velocity profile and temperature profile on the dimensionless parameter of practical interest has been analyzed in detail by graphs. The dependence of Skin friction and Nusselt number has been seen through tables.展开更多
Radiation effect on the natural convection flow of an optically thin viscous incompressible fluid near a vertical plate with ramped wall temperature in a porous medium has been studied. The exact solution of momentum ...Radiation effect on the natural convection flow of an optically thin viscous incompressible fluid near a vertical plate with ramped wall temperature in a porous medium has been studied. The exact solution of momentum and energy equations is obtained by the use of Laplace transform technique. The variations in fluid velocity and temperature are shown graphically whereas the numerical values of shear stress and the rate of heat transfer at the wall are presented in tabular form for various values of flow parameters. The results show that the fluid velocity increases with increase in Grashof number, Darcy number and time parameters whereas the fluid velocity decreases with increase in the radiation parameter and Prandtl number for ramped temperature as well as isothermal wall temperature. It is found that an increase in radiation parameter leads to rise the temperature for both ramped wall temperature as well as isothermal wall temperature. Further, it is found that an increase in Prandtl number leads to fall the temperature for both ramped wall temperature as well as isothermal wall temperature. The shear stress at the wall decreases with increases in either Prandtl number or porosity parameter while the result shows reverse in the case of radiation parameter. Finally, the rate of heat transfer is increased with increases in the radiation parameter for both ramped wall temperature as well as isothermal wall temperature.展开更多
文摘The boundary layer flow of viscous incompressible fluid over a stretching cylinder has been considered to study flow field and temperature field. Due to non-linearity, a numerical approach called Keller-box technique has been used to compute the values of velocity function f and temperature field at different points of dynamic region. The expressions for skin friction and Nusselt number have also been obtained. The dependence of velocity profile and temperature profile on the dimensionless parameter of practical interest has been analyzed in detail by graphs. The dependence of Skin friction and Nusselt number has been seen through tables.
文摘Radiation effect on the natural convection flow of an optically thin viscous incompressible fluid near a vertical plate with ramped wall temperature in a porous medium has been studied. The exact solution of momentum and energy equations is obtained by the use of Laplace transform technique. The variations in fluid velocity and temperature are shown graphically whereas the numerical values of shear stress and the rate of heat transfer at the wall are presented in tabular form for various values of flow parameters. The results show that the fluid velocity increases with increase in Grashof number, Darcy number and time parameters whereas the fluid velocity decreases with increase in the radiation parameter and Prandtl number for ramped temperature as well as isothermal wall temperature. It is found that an increase in radiation parameter leads to rise the temperature for both ramped wall temperature as well as isothermal wall temperature. Further, it is found that an increase in Prandtl number leads to fall the temperature for both ramped wall temperature as well as isothermal wall temperature. The shear stress at the wall decreases with increases in either Prandtl number or porosity parameter while the result shows reverse in the case of radiation parameter. Finally, the rate of heat transfer is increased with increases in the radiation parameter for both ramped wall temperature as well as isothermal wall temperature.