A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE...A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE_(1)and TM_(1)modes,which evenly come out from the two output ports.The finite-difference time-domain method and direct-binary-search optimization algorithm are utilized to optimize structural parameters of the pixelated region to attain small insertion loss,low crosstalk,wide bandwidth,excellent power uniformity,polarization-insensitive property,and compact size.Experimental results reveal that the insertion loss,crosstalk,and power uniformity of the fabricated device at 1550 nm are 0.57,-19.67,and 0.094 d B in the case of TE polarization,while in the TM polarization,the relevant insertion loss,crosstalk,and power uniformity are 0.57,-19.40,and 0.11 d B.Within a wavelength range from 1520 to 1600 nm,for the fabricated device working at TE polarization,the insertion loss,crosstalk,and power uniformity are lower than 1.39,-17.64,and 0.14 dB.In the case of TM polarization,we achieved an insertion loss,crosstalk,and power uniformity less than 1.23,-17.62,and 0.14 dB.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommun...A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommunication purpose with T-Junction, Y-Junction, PC line defect waveguides integrated with multimode interference block (PCLD-MMI) and multiple line defect PC waveguides (MLDPCW) configurations. The optical modeling of these proposed structures was investigated by finite difference time domain (FDTD) simulation. With the optimization of the parameters (Hole Radius, R = 0.128 μm, Input Diameter, D = 1.02 μm, Input wavelength, λ = 1.55 μm, Substrate Reflective Index, nsub = Si(1.52), Photonic Crystal Material, npcs = InAs(3.45), and Rectangular crystal structure), 1 × 2 for Y-Junction (100%), 1 × 4 for T-Junction (92.8%) and 1 × 6 configuration for MLDPCW (81%) show maximum power transmission.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62275134,62234008,and 61875098)the Zhejiang Provincial Natural Science Foundation(Nos.LY20F050003 and LY20F050001)+2 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo(No.2023QL003)the Natural Science Foundation of Ningbo(Nos.2022J099 and 202003N4159)the K.C.Wong Magna Fund in Ningbo University。
文摘A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE_(1)and TM_(1)modes,which evenly come out from the two output ports.The finite-difference time-domain method and direct-binary-search optimization algorithm are utilized to optimize structural parameters of the pixelated region to attain small insertion loss,low crosstalk,wide bandwidth,excellent power uniformity,polarization-insensitive property,and compact size.Experimental results reveal that the insertion loss,crosstalk,and power uniformity of the fabricated device at 1550 nm are 0.57,-19.67,and 0.094 d B in the case of TE polarization,while in the TM polarization,the relevant insertion loss,crosstalk,and power uniformity are 0.57,-19.40,and 0.11 d B.Within a wavelength range from 1520 to 1600 nm,for the fabricated device working at TE polarization,the insertion loss,crosstalk,and power uniformity are lower than 1.39,-17.64,and 0.14 dB.In the case of TM polarization,we achieved an insertion loss,crosstalk,and power uniformity less than 1.23,-17.62,and 0.14 dB.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
文摘A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommunication purpose with T-Junction, Y-Junction, PC line defect waveguides integrated with multimode interference block (PCLD-MMI) and multiple line defect PC waveguides (MLDPCW) configurations. The optical modeling of these proposed structures was investigated by finite difference time domain (FDTD) simulation. With the optimization of the parameters (Hole Radius, R = 0.128 μm, Input Diameter, D = 1.02 μm, Input wavelength, λ = 1.55 μm, Substrate Reflective Index, nsub = Si(1.52), Photonic Crystal Material, npcs = InAs(3.45), and Rectangular crystal structure), 1 × 2 for Y-Junction (100%), 1 × 4 for T-Junction (92.8%) and 1 × 6 configuration for MLDPCW (81%) show maximum power transmission.