在可再生能源与火力发电耦合系统中,风电出力波动和远端故障扰动都会引起系统电压越限。文章在考虑通信延时的基础上,以耦合系统各节点电压偏差为量化指标,分析了耦合系统无功控制对电压稳定性的影响,提出了一种以静止无功发生器(Static...在可再生能源与火力发电耦合系统中,风电出力波动和远端故障扰动都会引起系统电压越限。文章在考虑通信延时的基础上,以耦合系统各节点电压偏差为量化指标,分析了耦合系统无功控制对电压稳定性的影响,提出了一种以静止无功发生器(Static Var Generator,SVG)和风电机组作为无功调节资源的耦合系统双层无功控制优化策略。该策略上层为SVG无功调节设备,以耦合系统各节点电压偏差综合最小为目标,构建了系统整体功率因数优化模型。下层针对电压偏差大的节点,利用节点附近的风电机组为无功调节设备,以系统电压偏差和网损综合最优为目标,构建了风电机组无功优化模型,采用Ybus与LinWPSO相结合的算法求解优化模型,并得出风电机组无功参考值。案例仿真结果表明,文章所提的双层无功控制策略可充分发挥风电机组无功调节潜力,兼顾到耦合系统的电压波动和网损,减少可再生能源功率波动对耦合系统的扰动,提高了耦合系统的电压稳定性。展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
文摘在可再生能源与火力发电耦合系统中,风电出力波动和远端故障扰动都会引起系统电压越限。文章在考虑通信延时的基础上,以耦合系统各节点电压偏差为量化指标,分析了耦合系统无功控制对电压稳定性的影响,提出了一种以静止无功发生器(Static Var Generator,SVG)和风电机组作为无功调节资源的耦合系统双层无功控制优化策略。该策略上层为SVG无功调节设备,以耦合系统各节点电压偏差综合最小为目标,构建了系统整体功率因数优化模型。下层针对电压偏差大的节点,利用节点附近的风电机组为无功调节设备,以系统电压偏差和网损综合最优为目标,构建了风电机组无功优化模型,采用Ybus与LinWPSO相结合的算法求解优化模型,并得出风电机组无功参考值。案例仿真结果表明,文章所提的双层无功控制策略可充分发挥风电机组无功调节潜力,兼顾到耦合系统的电压波动和网损,减少可再生能源功率波动对耦合系统的扰动,提高了耦合系统的电压稳定性。
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.