Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions i...Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions in condensed matter.Here we investigate,numerically and analytically,the phenomenon of fractional revivals in such systems,which is a generic characteristic manifested by the wave-packet evolution in bounded Hamiltonian systems.Identifying the fractional revivals using specific probes is an important task in the theory of quantum measurement and sensing.We numerically simulate the temporal evolution of probability density and information entropy density,which manifest self-similarly recurring interference patterns,namely,quantum carpets.Our numerical results show that the quantum carpets not only serve as an effective probe for recognizing the fractional revivals of various order but they efficiently describe the effect of spatially-varying mass on the structure of fractional revivals,which is manifested as a symmetry breaking in their designs.展开更多
In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of H...In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of Heisenberg’s uncertainty principle, and we will show that it is verified.展开更多
A new method is illustrated for processing the output of a set of triad orthogonal rate gyros and accelerometers to reconstruct vehicle navigation parameters(attitude, velocity, and position). The paper introduces two...A new method is illustrated for processing the output of a set of triad orthogonal rate gyros and accelerometers to reconstruct vehicle navigation parameters(attitude, velocity, and position). The paper introduces two vectors with dimensions 4×1 as velocity and position quaternions.The navigation equations for strapdown systems are nonlinear but after using these parameters, the navigation equations are converted into a pseudo-linear system. The new set of navigation equations has an analytical solution and the state transition matrix is used to solve the linear timevarying differential equations through time series. The navigation parameters are updated using the new formulation for strapdown navigation equations. Finally, the quaternions of velocity and position are converted into the original position and velocity vectors. The combination of the coning motion and a translational oscillatory trajectory is used to evaluate the accuracy of the proposed algorithm. The simulations show significant improvement in the accuracy of the inertial navigation system, which is achieved through the mentioned algorithm.展开更多
Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponen...Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.展开更多
We investigate an analytical solution for the Schr o¨dinger equation with a position-dependent mass distribution, with the Morse potential via Laplace transformations. We considered a mass function localized arou...We investigate an analytical solution for the Schr o¨dinger equation with a position-dependent mass distribution, with the Morse potential via Laplace transformations. We considered a mass function localized around the equilibrium position.The mass distribution depends on the energy spectrum of the state and the intrinsic parameters of the Morse potential. An exact bound state solution is obtained in the presence of this mass distribution.展开更多
【目的】基于非线性分位数回归方法构建大兴安岭落叶松(Larix gmelinii)树干削度方程,并分析比较基本模型与不同分位数(τ=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)模型,利用树干不同高度的上部直径进行矫正分位数组合模型预测精...【目的】基于非线性分位数回归方法构建大兴安岭落叶松(Larix gmelinii)树干削度方程,并分析比较基本模型与不同分位数(τ=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)模型,利用树干不同高度的上部直径进行矫正分位数组合模型预测精度,为落叶松天然林干形的精准预测提供理论依据。【方法】以大兴安岭壮志林场212株落叶松树干干形数据为研究对象,基于非线性分位数回归方法和Max and Burkhart分段削度方程,利用SAS软件中NLP过程拟合各分位数分段削度方程,把树干相对高20%、30%、40%、50%、60%、70%处的直径以及胸径到树尖的中间位置(50%*)的树干上部直径引入到分段削度方程中进行矫正,并以平均误差(MAB)和相对误差(MPB)为评价指标对削度方程进行对比分析。【结果】Max-Burkhart分段削度方程在9个不同的分位点都可以得到参数估计值,因此分位数回归削度模型可以评价在不同分位数的预测能力。未矫正的分位数(τ=0.5、0.6)模型的预测精度略优于基本模型。准确地选择矫正位置至关重要,与未矫正的基本模型相比,利用树干相对高20%和70%处的直径进行矫正不能提高各分位数组合模型的预测精度,利用树干相对高30%、40%、50%、60%处的直径以及胸径到树尖中间位置的树干上部直径进行矫正的大多数分位数组合(3、5、7、9个分位数组合)模型的预测精度都能得到提高,总体使用矫正位置分位数组合模型的预测精度顺序为40%>50%*>50%>60%>30%>20%>70%。最佳的矫正位置为树干相对高40%处,并以3个分位数的组合(τ=0.3、0.5、0.7)模型预测精度最高,与未矫正的基本模型相比,MAB和MPB均下降13.5%。【结论】在削度方程中引入一个合理的矫正位置可以提高模型的预测精度,其中,最佳矫正位置为树干相对高40%处,最优模型为3个分位数组合(τ=0.3、0.5、0.7)模型。在实际应用中,如果不考虑矫正时,�展开更多
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
基金Financial support from Higher Education Commission(HEC)of Pakistan,under Grant No.20-14808/NRPU/R&D/HEC/20212021
文摘Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions in condensed matter.Here we investigate,numerically and analytically,the phenomenon of fractional revivals in such systems,which is a generic characteristic manifested by the wave-packet evolution in bounded Hamiltonian systems.Identifying the fractional revivals using specific probes is an important task in the theory of quantum measurement and sensing.We numerically simulate the temporal evolution of probability density and information entropy density,which manifest self-similarly recurring interference patterns,namely,quantum carpets.Our numerical results show that the quantum carpets not only serve as an effective probe for recognizing the fractional revivals of various order but they efficiently describe the effect of spatially-varying mass on the structure of fractional revivals,which is manifested as a symmetry breaking in their designs.
文摘In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of Heisenberg’s uncertainty principle, and we will show that it is verified.
文摘A new method is illustrated for processing the output of a set of triad orthogonal rate gyros and accelerometers to reconstruct vehicle navigation parameters(attitude, velocity, and position). The paper introduces two vectors with dimensions 4×1 as velocity and position quaternions.The navigation equations for strapdown systems are nonlinear but after using these parameters, the navigation equations are converted into a pseudo-linear system. The new set of navigation equations has an analytical solution and the state transition matrix is used to solve the linear timevarying differential equations through time series. The navigation parameters are updated using the new formulation for strapdown navigation equations. Finally, the quaternions of velocity and position are converted into the original position and velocity vectors. The combination of the coning motion and a translational oscillatory trajectory is used to evaluate the accuracy of the proposed algorithm. The simulations show significant improvement in the accuracy of the inertial navigation system, which is achieved through the mentioned algorithm.
基金Project supported by Erciyes University-FBA-09-999
文摘Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.
文摘We investigate an analytical solution for the Schr o¨dinger equation with a position-dependent mass distribution, with the Morse potential via Laplace transformations. We considered a mass function localized around the equilibrium position.The mass distribution depends on the energy spectrum of the state and the intrinsic parameters of the Morse potential. An exact bound state solution is obtained in the presence of this mass distribution.
文摘【目的】基于非线性分位数回归方法构建大兴安岭落叶松(Larix gmelinii)树干削度方程,并分析比较基本模型与不同分位数(τ=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)模型,利用树干不同高度的上部直径进行矫正分位数组合模型预测精度,为落叶松天然林干形的精准预测提供理论依据。【方法】以大兴安岭壮志林场212株落叶松树干干形数据为研究对象,基于非线性分位数回归方法和Max and Burkhart分段削度方程,利用SAS软件中NLP过程拟合各分位数分段削度方程,把树干相对高20%、30%、40%、50%、60%、70%处的直径以及胸径到树尖的中间位置(50%*)的树干上部直径引入到分段削度方程中进行矫正,并以平均误差(MAB)和相对误差(MPB)为评价指标对削度方程进行对比分析。【结果】Max-Burkhart分段削度方程在9个不同的分位点都可以得到参数估计值,因此分位数回归削度模型可以评价在不同分位数的预测能力。未矫正的分位数(τ=0.5、0.6)模型的预测精度略优于基本模型。准确地选择矫正位置至关重要,与未矫正的基本模型相比,利用树干相对高20%和70%处的直径进行矫正不能提高各分位数组合模型的预测精度,利用树干相对高30%、40%、50%、60%处的直径以及胸径到树尖中间位置的树干上部直径进行矫正的大多数分位数组合(3、5、7、9个分位数组合)模型的预测精度都能得到提高,总体使用矫正位置分位数组合模型的预测精度顺序为40%>50%*>50%>60%>30%>20%>70%。最佳的矫正位置为树干相对高40%处,并以3个分位数的组合(τ=0.3、0.5、0.7)模型预测精度最高,与未矫正的基本模型相比,MAB和MPB均下降13.5%。【结论】在削度方程中引入一个合理的矫正位置可以提高模型的预测精度,其中,最佳矫正位置为树干相对高40%处,最优模型为3个分位数组合(τ=0.3、0.5、0.7)模型。在实际应用中,如果不考虑矫正时,�