期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于对抗学习的指针仪表自适应读数识别算法 被引量:1
1
作者 刘林 马云飞 +1 位作者 王荷生 李宁 《燕山大学学报》 CAS 北大核心 2024年第2期165-170,共6页
针对指针仪表采用人工读数方式存在的成本较高、读数不准确、时效性较差的问题,提出一种基于对抗学习的指针仪表位姿自适应读数识别算法。该算法通过目标检测模型识别图像中的指针仪表的位置和姿态,将指针仪表进行校准后并利用数字图像... 针对指针仪表采用人工读数方式存在的成本较高、读数不准确、时效性较差的问题,提出一种基于对抗学习的指针仪表位姿自适应读数识别算法。该算法通过目标检测模型识别图像中的指针仪表的位置和姿态,将指针仪表进行校准后并利用数字图像处理技术进行读数识别。为了提升目标检测模型对位姿不同的指针仪表图像的识别效果,本文提出了基于对抗学习的数据增强技术,通过优化搜索模型识别不准的图像旋转角度、平移距离以及缩放比例构造训练数据,提高目标检测模型在指针仪表位姿发生变化时的准确率。以工矿企业中常用的SF6压力仪表为实验对象,实验结果表明读数识别的误差在1%以内,证明了所提算法的有效性。 展开更多
关键词 指针仪表 读数识别 目标检测 位姿不变 对抗学习
下载PDF
融合显著性分析与图割的姿态无关服装区域分割算法 被引量:5
2
作者 黄磊 夏添 +1 位作者 张勇东 林守勋 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第5期620-627,共8页
提出了一种针对多姿态人的服装区域分割算法,通过融合显著性分析和图割方法有效地提高了服装区域分割的性能.首先,提出一种基于滑动窗口的视觉显著性区域分析方法,计算前景?背景种子区域初始定位,实现种子区域定位的姿态无关性;然后,通... 提出了一种针对多姿态人的服装区域分割算法,通过融合显著性分析和图割方法有效地提高了服装区域分割的性能.首先,提出一种基于滑动窗口的视觉显著性区域分析方法,计算前景?背景种子区域初始定位,实现种子区域定位的姿态无关性;然后,通过基于图的分割方法对初始种子区域进行矫正;最后,通过将种子区域作为输入的迭代图割方法——GrabCut获得服装区域分割.实验结果表明,文中算法具有较好的分割性能,具有应用前景. 展开更多
关键词 服装区域分割 显著性分析 GRABCUT 姿态无关性
下载PDF
Deep Global Multiple-Scale and Local Patches Attention Dual-Branch Network for Pose-Invariant Facial Expression Recognition
3
作者 Chaoji Liu Xingqiao Liu +1 位作者 Chong Chen Kang Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期405-440,共36页
Pose-invariant facial expression recognition(FER)is an active but challenging research topic in computer vision.Especially with the involvement of diverse observation angles,FER makes the training parameter models inc... Pose-invariant facial expression recognition(FER)is an active but challenging research topic in computer vision.Especially with the involvement of diverse observation angles,FER makes the training parameter models inconsistent from one view to another.This study develops a deep global multiple-scale and local patches attention(GMS-LPA)dual-branch network for pose-invariant FER to weaken the influence of pose variation and selfocclusion on recognition accuracy.In this research,the designed GMS-LPA network contains four main parts,i.e.,the feature extraction module,the global multiple-scale(GMS)module,the local patches attention(LPA)module,and the model-level fusion model.The feature extraction module is designed to extract and normalize texture information to the same size.The GMS model can extract deep global features with different receptive fields,releasing the sensitivity of deeper convolution layers to pose-variant and self-occlusion.The LPA module is built to force the network to focus on local salient features,which can lower the effect of pose variation and self-occlusion on recognition results.Subsequently,the extracted features are fused with a model-level strategy to improve recognition accuracy.Extensive experimentswere conducted on four public databases,and the recognition results demonstrated the feasibility and validity of the proposed methods. 展开更多
关键词 pose-invariant FER global multiple-scale(GMS) local patches attention(LPA) model-level fusion
下载PDF
Novel algorithm for pose-invariant face recognition
4
作者 刘朋樟 沈庭芝 +2 位作者 赵三元 岳雷 闫雪梅 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期246-252,共7页
By combining the AdaBoost modular locality preserving projection (AMLPP) algorithm and the locally linear regression (LLR) algorithm, a novel pose-invariant algorithm is proposed to realize high-accuracy face reco... By combining the AdaBoost modular locality preserving projection (AMLPP) algorithm and the locally linear regression (LLR) algorithm, a novel pose-invariant algorithm is proposed to realize high-accuracy face recognition under different poses. In the training stage of this algorithm, the AMLPP is employed to select the crucial frontal blocks and construct effective strong classifier. According to the selected frontal blocks and the corresponding non-frontal blocks, LLR is then applied to learn the linear mappings which will be used to convert the non-frontal blocks to visual frontal blocks. During the testing of the learned linear mappings, when a non-frontal face image is inputted, the non-frontal blocks corresponding to the selected frontal blocks are extracted and converted to the visual frontal blocks. The generated virtual frontal blocks are finally fed into the strong classifier constructed by AMLPP to realize accurate and efficient face recognition. Our algorithm is experimentally compared with other pose-invariant face recognition algorithms based on the Bosphorus database. The results show a significant improvement with our proposed algorithm. 展开更多
关键词 pose-invariant block-based virtual frontal view locally linear regression (LLR) FACERECOGNITION
下载PDF
用SIFT词汇树实现的姿态无关的人脸识别 被引量:8
5
作者 张剑 何骅 +1 位作者 詹小四 肖俊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第11期1694-1700,共7页
自动人脸识别是智能视频监控的重要组成部分.为提高人脸姿态不确定时的识别准确率,提出一种姿态无关的识别方法.该方法分为训练与识别2个阶段:在训练阶段,利用样本图像的SIFT特征构造词汇树,基于该词汇树对每幅图像进行定量表示,并利用... 自动人脸识别是智能视频监控的重要组成部分.为提高人脸姿态不确定时的识别准确率,提出一种姿态无关的识别方法.该方法分为训练与识别2个阶段:在训练阶段,利用样本图像的SIFT特征构造词汇树,基于该词汇树对每幅图像进行定量表示,并利用保局投影进行维度约减;在识别阶段,通过提取待识别图像的SIFT特征,利用已有词汇树表示图像,并通过保局投影得到低维特征,采用K近邻方法进行识别.实验结果表明,该方法在人脸姿态不确定的情况下能够有效地提高识别准确率. 展开更多
关键词 SIFT特征 词汇树 K近邻 保局投影 姿态无关的人脸识别
下载PDF
一种新的基于单视图的多姿态人脸识别方法 被引量:2
6
作者 赵明华 莫瑞阳 +1 位作者 石争浩 张飞飞 《西安理工大学学报》 CAS 北大核心 2017年第1期18-23,共6页
姿态变化和单视图是二维人脸识别研究的瓶颈问题。本文基于姿态矫正的思想,提出了一种基于单视图的多姿态人脸识别方法。首先,通过多视角主动表观模型进行人脸对齐和归一化;其次,基于线性回归算法寻求正、侧人脸之间的关系,并利用此关... 姿态变化和单视图是二维人脸识别研究的瓶颈问题。本文基于姿态矫正的思想,提出了一种基于单视图的多姿态人脸识别方法。首先,通过多视角主动表观模型进行人脸对齐和归一化;其次,基于线性回归算法寻求正、侧人脸之间的关系,并利用此关系进行姿态矫正得到正脸图像;最后,采用遗传算法筛选支持向量机的参数,并利用支持向量机对矫正后的人脸进行分类。在CASPEAL-R1人脸数据库上的实验结果表明,该方法在处理姿态变化的人脸识别问题时,对于姿态为15°、30°和45°的识别率分别达到了98%、84%和76%,识别性能高于其它方法。 展开更多
关键词 多姿态人脸识别 线性回归 支持向量机 多视角主动表观模型
下载PDF
针对跨姿态人脸识别的度量学习方法
7
作者 王奥迪 《现代计算机》 2019年第3期41-43,61,共4页
近年来,由于深度学习技术的引入,人脸识别技术取得显著的发展。然而,当前的人脸识别模型在解决跨姿态人脸识别问题上效果仍然不理想。其中导致这一现象的主要原因是,目前用来训练人脸模型的数据集中姿态变化较少或者不均衡。针对跨姿态... 近年来,由于深度学习技术的引入,人脸识别技术取得显著的发展。然而,当前的人脸识别模型在解决跨姿态人脸识别问题上效果仍然不理想。其中导致这一现象的主要原因是,目前用来训练人脸模型的数据集中姿态变化较少或者不均衡。针对跨姿态人脸识别问题,提出一种基于度量学习的方法 CPP Loss。该方法能够有效地利用训练集中有限的姿态变化,在基准模型上进一步提升其在跨姿态条件下的人脸识别准确率。 展开更多
关键词 深度学习 人脸识别 跨姿态人脸识别 度量学习 CPPLoss
下载PDF
Contact-free and pose-invariant hand-biometric-based personal identification system using RGB and depth data
8
作者 Can WANG Hong LIU Xing LIU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第7期525-536,共12页
Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,spec... Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,specified postures, simple background, and stable illumination. In this paper, a contactless personal identification system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to constrain hand position or posture. We segment the hand from the background through depth images through a process which is insensitive to illumination and background. Then finger orientations and landmark points, like finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from depth images and palmprint features from intensity images. In previous systems, hand features like finger length and width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D image points into real world coordinates, so that the geometric features remain invariant to distance and perspective effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system is effective and robust in various practical situations. 展开更多
关键词 Hand biometric Contact free pose invariant Identification system Multiple features
原文传递
DLLE:一种姿态无关的人脸识别改进算法
9
作者 赵松 潘可 张培仁 《小型微型计算机系统》 CSCD 北大核心 2009年第6期1193-1197,共5页
经典LLE(Locally Linear Embedding)通过流形学习,能够得到嵌入在高维空间的低维流形.但是它与Isomap、Lapla-cian Eigenmaps一样,学习过程中没有用到先验知识.本文改进了LLE方法,充分利用先验类别信息,能够找到从高维空间到低维空间更... 经典LLE(Locally Linear Embedding)通过流形学习,能够得到嵌入在高维空间的低维流形.但是它与Isomap、Lapla-cian Eigenmaps一样,学习过程中没有用到先验知识.本文改进了LLE方法,充分利用先验类别信息,能够找到从高维空间到低维空间更为合理的映射.最终使用一种线性近似的方法学习这种映射的显示表达.通过这种映射,可以比较好地解决人脸识别中的姿态问题.在FERET数据库上,当姿态变化从-60度到+60度,该方法达到了较高的识别率. 展开更多
关键词 LLE DLLE 判别 姿态无关 人脸识别
下载PDF
基于卷积神经网络的大姿态人脸对齐方法 被引量:2
10
作者 蓝敏 《太赫兹科学与电子信息学报》 2021年第2期295-302,共8页
大姿态人脸对齐是人脸识别和三维人脸重构等很多重要视觉任务的先决条件。现有的对齐方法大多使用二维界标位置来进行对齐,且使用的界标数量有限,影响大姿态人脸对齐的准确性。提出一种采用三维形变模型(3DMM)来表示二维人脸图像,将具... 大姿态人脸对齐是人脸识别和三维人脸重构等很多重要视觉任务的先决条件。现有的对齐方法大多使用二维界标位置来进行对齐,且使用的界标数量有限,影响大姿态人脸对齐的准确性。提出一种采用三维形变模型(3DMM)来表示二维人脸图像,将具有任意姿态的人脸对齐问题建模为基于3DMM的拟合问题。采用基于卷积神经网络(CNN)的级联回归方法学习二维人脸图像及其表示之间的映射关系。提出2种新的姿态不变局部特征作为卷积神经网络学习的输入层,通过训练得到CNN用于大姿态人脸对齐。在2个经典的人脸图像数据集上的仿真实验结果表明,与目前最新的人脸对齐方法相比,该方法的效果较优。 展开更多
关键词 人脸对齐 界标 三维形变模型 卷积神经网络 姿态不变局部特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部