Response surface methodology(RSM) was used to determine the optimum conditions of the methanolysis of crude poppy seed oil using Na OCH3 as catalyst. The experiments were run according to five levels, four variable ce...Response surface methodology(RSM) was used to determine the optimum conditions of the methanolysis of crude poppy seed oil using Na OCH3 as catalyst. The experiments were run according to five levels, four variable central composite rotatable design(CCRD) using RSM. The reaction variables, i.e., molar ratio of methanol/oil(3:1–9:1), catalyst concentration(0.5 wt%–1.25 wt% Na OCH3), reaction temperature(25–65 °C), and reaction time(20–90 min) were studied. We demonstrated that the molar ratio of methanol/oil, catalyst concentration,and reaction temperature were the significant parameters affecting the yield of poppy seed oil methyl esters(PSOMEs). The optimum transesterification reaction conditions, established using the RSM, which offered a89.35% PSOME yield, were found to be 7.5:1 molar ratio of methanol/oil, 0.75% catalyst concentration, 45 °C reaction temperature, and 90 min reaction time. The proposed process provided an average biodiesel yield of more than 85%. A linear correlation was constructed between the observed and predicted values of the yield.The gas chromatography(GC) analyses have shown that PSOMEs contain linoleic-, oleic-, palmitic-, and stearic-acids as main fatty acids. The FTIR spectrum of the PSOMEs was also analyzed to confirm the completion of the transesterification reaction. The fuel properties of the PSOMEs were discussed in light of biodiesel standards(ASTM D 6751 and EN 14214).展开更多
为了提高罂粟籽油的稳定性,通过复凝聚法制备罂粟籽油微囊。以阿拉伯胶和明胶为壁材,通过微囊化技术、喷雾干燥得到微囊。正交优化确定最佳配方,并考察芯壁比(罂粟籽油∶阿拉伯胶/明胶)对微囊包封率、载药量的影响。结果表明,罂粟籽油...为了提高罂粟籽油的稳定性,通过复凝聚法制备罂粟籽油微囊。以阿拉伯胶和明胶为壁材,通过微囊化技术、喷雾干燥得到微囊。正交优化确定最佳配方,并考察芯壁比(罂粟籽油∶阿拉伯胶/明胶)对微囊包封率、载药量的影响。结果表明,罂粟籽油微囊制备的最佳条件为:壁材浓度为2.0%,芯壁比1∶3,p H 4.2,乳化剂浓度1.5%,此时包封率为76.9%。包封后罂粟籽油的氧化实验表明微囊可提高其存储稳定性。复凝聚法制备罂粟籽油微囊的工艺简单,产品稳定性好,在食品工业中具有较好的应用前景。展开更多
基金the Deanship of Scientific Research at King Saud University for its funding of this research through the research group project RGP-VPP-048
文摘Response surface methodology(RSM) was used to determine the optimum conditions of the methanolysis of crude poppy seed oil using Na OCH3 as catalyst. The experiments were run according to five levels, four variable central composite rotatable design(CCRD) using RSM. The reaction variables, i.e., molar ratio of methanol/oil(3:1–9:1), catalyst concentration(0.5 wt%–1.25 wt% Na OCH3), reaction temperature(25–65 °C), and reaction time(20–90 min) were studied. We demonstrated that the molar ratio of methanol/oil, catalyst concentration,and reaction temperature were the significant parameters affecting the yield of poppy seed oil methyl esters(PSOMEs). The optimum transesterification reaction conditions, established using the RSM, which offered a89.35% PSOME yield, were found to be 7.5:1 molar ratio of methanol/oil, 0.75% catalyst concentration, 45 °C reaction temperature, and 90 min reaction time. The proposed process provided an average biodiesel yield of more than 85%. A linear correlation was constructed between the observed and predicted values of the yield.The gas chromatography(GC) analyses have shown that PSOMEs contain linoleic-, oleic-, palmitic-, and stearic-acids as main fatty acids. The FTIR spectrum of the PSOMEs was also analyzed to confirm the completion of the transesterification reaction. The fuel properties of the PSOMEs were discussed in light of biodiesel standards(ASTM D 6751 and EN 14214).
文摘为了提高罂粟籽油的稳定性,通过复凝聚法制备罂粟籽油微囊。以阿拉伯胶和明胶为壁材,通过微囊化技术、喷雾干燥得到微囊。正交优化确定最佳配方,并考察芯壁比(罂粟籽油∶阿拉伯胶/明胶)对微囊包封率、载药量的影响。结果表明,罂粟籽油微囊制备的最佳条件为:壁材浓度为2.0%,芯壁比1∶3,p H 4.2,乳化剂浓度1.5%,此时包封率为76.9%。包封后罂粟籽油的氧化实验表明微囊可提高其存储稳定性。复凝聚法制备罂粟籽油微囊的工艺简单,产品稳定性好,在食品工业中具有较好的应用前景。