In this paper we present a numerical method for solving Riemann type problem for the fifth order improperly elliptic equation in complex plane .We reduce this problem to the boundary value problems for properly ellipt...In this paper we present a numerical method for solving Riemann type problem for the fifth order improperly elliptic equation in complex plane .We reduce this problem to the boundary value problems for properly elliptic equations, and then solve those problems by the grid methods.展开更多
In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Mille...In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.展开更多
In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental soluti...In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.展开更多
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove ...We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).展开更多
Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic bounda...Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic boundary value problem (-△)mu=a1(x)uα1+a2(x)uα2 , lim|x|→1 u(x) (1-|x|)m-1 =0, where α1,α2∈(-1, 1) and a1, a2 are two nonnegative measurable functions on B satisfying some appropriate assumptions related to Karamata regular variation theory.展开更多
文摘In this paper we present a numerical method for solving Riemann type problem for the fifth order improperly elliptic equation in complex plane .We reduce this problem to the boundary value problems for properly elliptic equations, and then solve those problems by the grid methods.
基金financially supported by a grant from the Ministry of Science and Education of the Republic of Kazakhstan(0819/GF4)
文摘In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.
基金National Natural Science Foundation of China (Grant No. 11401254)。
文摘In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.
文摘We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).
文摘Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic boundary value problem (-△)mu=a1(x)uα1+a2(x)uα2 , lim|x|→1 u(x) (1-|x|)m-1 =0, where α1,α2∈(-1, 1) and a1, a2 are two nonnegative measurable functions on B satisfying some appropriate assumptions related to Karamata regular variation theory.