The concentrations of PAHs in the surface waters from seven river basins in China were summarized from literature published from 2000-2010. Subsequently, the risks from individual PAHs and Y. PAHs in the surface water...The concentrations of PAHs in the surface waters from seven river basins in China were summarized from literature published from 2000-2010. Subsequently, the risks from individual PAHs and Y. PAHs in the surface waters of China were quantified by comparing the overlap between the probability distributions of exposure concentrations with the probability distributions of toxicity data. The results show that the concentrations of 15 PAHs in the surface waters ranged from 3.09 to 38139.00 ng L-a, with a geometric mean of 474.93 ng L-1. The significantly higher concentrations of the 15 PAHs occurred in the surface waters from northern China when compared with those from southern China. The concentrations of the 15 PAHs in Chinese surface waters were higher than those in other waters worldwide. The MOSI0 (margin of safety) values were calculated at 90th percen- tile values of exposure concentrations and 10th percentile values of toxicity data, with 5.75, 0.17, 2.33, 0.30, 0.57, 1.74, 1.05, and 0.11 for Ace, Ant, Flu, BaP, Flua, Nap, Phe, and Pyr, respectively. The probabilities of the individual PAH concentrations exceeding the 10th percentile value of the toxicity data were 6.06%, 2.07%, 9.51%, and 2.07% for Nap, Ace, Phe, and Flu, re- spectively, suggesting minimal risk to aquatic organisms; however, the probabilities of BaP, Ant, Flua, and Pyr exceeding this value were 19.49%, 25.46%, 15.15%, and 30.50%, respectively, indicating potential risks. Among the individual PAHs, the ecological risk from Pyr was the highest, followed by, in descending order of risk, Ant, Bap, Flua, Phe, Nap, Flu, and Ace. Additionally, the combined ecological risk of ~ PAH8 in Chinese surface waters was significantly higher than any that of in- dividual PAHs alone. The MOS0 values in the river basins were 〈 1, except for the Haihe River Basin, suggesting a potential combined risk from E PAH8 in the other six fiver basins. The probabilities calculation indicate that low to high ecological risk from E PAH8 for all aquatic species was re展开更多
Polycyclic aromatic hydrocarbons(PAHs)are a typical class of persistent organic pollutants that is ubiquitous worldwide.Previous animal studies suggested that PAHs had adverse effects on female reproduction.However,th...Polycyclic aromatic hydrocarbons(PAHs)are a typical class of persistent organic pollutants that is ubiquitous worldwide.Previous animal studies suggested that PAHs had adverse effects on female reproduction.However,the human data regarding relationship of PAHs exposure with women reproductive health,such as ovarian dysfunction,are scarce.In this case-control study,the associations of serum levels of PAHs with the risk of premature ovarian failure(POF)and reproductive hormones in Chinese women were investigated,with recruiting 157 POF patients and 217 healthy women.The serum levels of 12 types of PAHs,as well as reproductive hormones,including follicle-stimulating hormone,luteinizing hormone and anti-mullerian hormone,were determined.In the logistic regression models,most individual PAH congeners showed significantly positive correlations with the risk of POF(p<0.05),except for fluorine and pyrene.Benzo(a)pyrene(BaP),as the most carcinogenic PAH congener,was observed to be significantly positively associated with the risk of POF.After adjustment for age,body mass index,educational levels and household income,per one-unit increase in the log-transformed BaP concentration was significantly correlated with 2.191-fold increased risk of POF(OR=2.191,95%CI:1.634-2.938,p<0.05).To the best of our knowledge,this is the first study to report an association between internal exposure levels of PAHs and the increased risk of POF in women.展开更多
This manuscript is reviewing the presence of substances of safety concern that may be generated in different types of meat products.Such substances include N-nitrosamines that can be generated under certain conditions...This manuscript is reviewing the presence of substances of safety concern that may be generated in different types of meat products.Such substances include N-nitrosamines that can be generated under certain conditions when using nitrite as preservative,the polycyclic aromatic hydrocarbons generated as a consequence of particular smoking processes,heterocyclic aromatic amines generated under particular cooking conditions,compounds released from the oxidation of lipids and proteins,Maillard reaction products like acrylamide and carboxymethyl lysine,and amines that can be generated and accumulated in fermented meats.These hazardous compounds,their mechanisms of generation,risks for health and ways of preventing its presence in meat products are briefly described in this review.展开更多
Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recen...Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recent years.In this study,the occurrence,distribution,source,and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry,normal,and flood seasons of 2018.The PAH concentrations ranged from 255 to 7298 ng/L and the NPAH concentrations ranged from not-detected(ND)to 212 ng/L.Among the target analytes,2-nitrofluorene(2-n Flu)was the predominant NPAH,with a detection frequency ranging from 85%to 90%and a maximum concentration of 56.2 ng/L.The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds.In terms of seasonal variation,the highest levels of the NPAHs and PAHs were in the dry season and flood season,respectively.Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion,whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion.The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model.The carcinogenic risk level of the targets ranged from 2.09×10^(-7)to 5.75×10^(-5)and some surface water samples posed a potential health risk.展开更多
Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,...Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,formation mechanism,and health risk assessment of them in heating season,particulate matter(PM)were collected in Beijing urban area from December 26,2017 to January 17,2018.PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS).Average daily concentrations of PAHs and NPAHs were(78±54)ng/m^(3)and(783±684)pg/m^(3),respectively.The concentrations of them were significantly higher at nighttime than at daytime,and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations.In the heating season,the dominant species of PAHs include benzo[b]fluoranthene,fluoranthene,pyrene,and chrysene,while 9-nitroanthracene,2+3-nitrofluoranthene,and 2-nitropyrene were dominant species for NPAHs.NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7μm particle size.Primary emissions such as biomass burning,coal combustion,and traffic emissions were the major sources of PAHs.NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals,as well as biomass burning during daytime.According to the health risk assessment,the total carcinogenic risk was higher in adults than in children.While upon oral ingestion,the carcinogenic risk in children was higher than that of adults,but the risk of adults was higher than children through skin contact and respiratory inhalation.展开更多
To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyan...To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.展开更多
The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs...The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs in agricultural ecosystems within these regions of China. This study primarily revealed the state of the contamination and distribution of polycyclic aromatic hydrocarbons (PAH) in agricultural soils in the subtropical regions. 115 surface soils (0-20 cm) were sampled in the breadbaskets of these regions. The concentrations and types of PAH were determined using gas chromatography linked to mass spectrometry (GC-MS). The total PAH concentrations ranged from 22.1 to 1 256.9 ng g^-1 with a mean of 318.2 ± 148.2 ng g^-1. In general terms, the current PAH concentrations were lower than most PAH levels reported in a number of investigations from different countries and regions. PAH isomer ratios indicated that pyrolytic origins, such as fossil fuel combustion related to vehicle tail gas and industrial emissions, were the dominant sources of PAH in the southern subtropical areas of China. Although PAH concentrations decreased with decreasing pollution, population, and traffic density, to a great extent PAH compositions were similar throughout subtropical soils, with naphthalene, phenanthrene, fluoranthene, and benzo(b)fluoranthene being dominant.展开更多
Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned ...Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.展开更多
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio...Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.展开更多
基金supported by National Basic Research Program of China(Grant No. 2008CB418200)National Natural Science Foundation of China (Grant Nos. U0833603, 41130743)
文摘The concentrations of PAHs in the surface waters from seven river basins in China were summarized from literature published from 2000-2010. Subsequently, the risks from individual PAHs and Y. PAHs in the surface waters of China were quantified by comparing the overlap between the probability distributions of exposure concentrations with the probability distributions of toxicity data. The results show that the concentrations of 15 PAHs in the surface waters ranged from 3.09 to 38139.00 ng L-a, with a geometric mean of 474.93 ng L-1. The significantly higher concentrations of the 15 PAHs occurred in the surface waters from northern China when compared with those from southern China. The concentrations of the 15 PAHs in Chinese surface waters were higher than those in other waters worldwide. The MOSI0 (margin of safety) values were calculated at 90th percen- tile values of exposure concentrations and 10th percentile values of toxicity data, with 5.75, 0.17, 2.33, 0.30, 0.57, 1.74, 1.05, and 0.11 for Ace, Ant, Flu, BaP, Flua, Nap, Phe, and Pyr, respectively. The probabilities of the individual PAH concentrations exceeding the 10th percentile value of the toxicity data were 6.06%, 2.07%, 9.51%, and 2.07% for Nap, Ace, Phe, and Flu, re- spectively, suggesting minimal risk to aquatic organisms; however, the probabilities of BaP, Ant, Flua, and Pyr exceeding this value were 19.49%, 25.46%, 15.15%, and 30.50%, respectively, indicating potential risks. Among the individual PAHs, the ecological risk from Pyr was the highest, followed by, in descending order of risk, Ant, Bap, Flua, Phe, Nap, Flu, and Ace. Additionally, the combined ecological risk of ~ PAH8 in Chinese surface waters was significantly higher than any that of in- dividual PAHs alone. The MOS0 values in the river basins were 〈 1, except for the Haihe River Basin, suggesting a potential combined risk from E PAH8 in the other six fiver basins. The probabilities calculation indicate that low to high ecological risk from E PAH8 for all aquatic species was re
基金supported by Zhejiang Provincial Natural Science of Foundation of China(No.LQ20B070005)the Fundamental Research Funds for the Central Universities(Nos.2019FZJD007 and 2019QNA6008)+1 种基金the National Natural Science Foundation of China(Nos.21876151 and 81703236)Project for Zhejiang Medical Technology Program(Nos.2018KY437,2016KYA049 and WKJ-ZJ-1621)
文摘Polycyclic aromatic hydrocarbons(PAHs)are a typical class of persistent organic pollutants that is ubiquitous worldwide.Previous animal studies suggested that PAHs had adverse effects on female reproduction.However,the human data regarding relationship of PAHs exposure with women reproductive health,such as ovarian dysfunction,are scarce.In this case-control study,the associations of serum levels of PAHs with the risk of premature ovarian failure(POF)and reproductive hormones in Chinese women were investigated,with recruiting 157 POF patients and 217 healthy women.The serum levels of 12 types of PAHs,as well as reproductive hormones,including follicle-stimulating hormone,luteinizing hormone and anti-mullerian hormone,were determined.In the logistic regression models,most individual PAH congeners showed significantly positive correlations with the risk of POF(p<0.05),except for fluorine and pyrene.Benzo(a)pyrene(BaP),as the most carcinogenic PAH congener,was observed to be significantly positively associated with the risk of POF.After adjustment for age,body mass index,educational levels and household income,per one-unit increase in the log-transformed BaP concentration was significantly correlated with 2.191-fold increased risk of POF(OR=2.191,95%CI:1.634-2.938,p<0.05).To the best of our knowledge,this is the first study to report an association between internal exposure levels of PAHs and the increased risk of POF in women.
基金Grants AGL2017-89831-R,AGL2015-64673-R and FEDER funds from the Spanish Ministry of Economy,Industry and Competitiveness are acknowledged.Ramon y Cajal postdoctoral contract to LM is also acknowledged。
文摘This manuscript is reviewing the presence of substances of safety concern that may be generated in different types of meat products.Such substances include N-nitrosamines that can be generated under certain conditions when using nitrite as preservative,the polycyclic aromatic hydrocarbons generated as a consequence of particular smoking processes,heterocyclic aromatic amines generated under particular cooking conditions,compounds released from the oxidation of lipids and proteins,Maillard reaction products like acrylamide and carboxymethyl lysine,and amines that can be generated and accumulated in fermented meats.These hazardous compounds,their mechanisms of generation,risks for health and ways of preventing its presence in meat products are briefly described in this review.
基金supported by the National Natural Science Foundation of China(No.41671493)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF17030)the National Major Project of the Science and Technology Ministry of China(No.2017ZX07202-004 and 2017X07301002-3)。
文摘Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recent years.In this study,the occurrence,distribution,source,and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry,normal,and flood seasons of 2018.The PAH concentrations ranged from 255 to 7298 ng/L and the NPAH concentrations ranged from not-detected(ND)to 212 ng/L.Among the target analytes,2-nitrofluorene(2-n Flu)was the predominant NPAH,with a detection frequency ranging from 85%to 90%and a maximum concentration of 56.2 ng/L.The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds.In terms of seasonal variation,the highest levels of the NPAHs and PAHs were in the dry season and flood season,respectively.Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion,whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion.The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model.The carcinogenic risk level of the targets ranged from 2.09×10^(-7)to 5.75×10^(-5)and some surface water samples posed a potential health risk.
基金supported by the National Natural Science Foundation of China(No.41907197)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China,Chinese Research Academy of Environmental Sciences(No.2019YSKY-018)+1 种基金the National Key R&D Program of China(No.2019YFC0214800)the Standard System and Key Standards Research of National Ecological Environment Protection and Risk Prevention(No.2020YFC18063)。
文摘Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,formation mechanism,and health risk assessment of them in heating season,particulate matter(PM)were collected in Beijing urban area from December 26,2017 to January 17,2018.PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS).Average daily concentrations of PAHs and NPAHs were(78±54)ng/m^(3)and(783±684)pg/m^(3),respectively.The concentrations of them were significantly higher at nighttime than at daytime,and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations.In the heating season,the dominant species of PAHs include benzo[b]fluoranthene,fluoranthene,pyrene,and chrysene,while 9-nitroanthracene,2+3-nitrofluoranthene,and 2-nitropyrene were dominant species for NPAHs.NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7μm particle size.Primary emissions such as biomass burning,coal combustion,and traffic emissions were the major sources of PAHs.NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals,as well as biomass burning during daytime.According to the health risk assessment,the total carcinogenic risk was higher in adults than in children.While upon oral ingestion,the carcinogenic risk in children was higher than that of adults,but the risk of adults was higher than children through skin contact and respiratory inhalation.
基金Supported by the National Natural Science Foundation of China(No.40801091)the National Basic Research Program(973 Program)of China(No.2004CB418503)
文摘To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.
基金Project supported by the State Environmental Protection Administration of China (No.2001-1-2)State Environmental Protection Administration of Guangdong (No.2001-08)Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,and the National Natural Science Foundation of China(Nos.30170147 and 30270282)
文摘The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs in agricultural ecosystems within these regions of China. This study primarily revealed the state of the contamination and distribution of polycyclic aromatic hydrocarbons (PAH) in agricultural soils in the subtropical regions. 115 surface soils (0-20 cm) were sampled in the breadbaskets of these regions. The concentrations and types of PAH were determined using gas chromatography linked to mass spectrometry (GC-MS). The total PAH concentrations ranged from 22.1 to 1 256.9 ng g^-1 with a mean of 318.2 ± 148.2 ng g^-1. In general terms, the current PAH concentrations were lower than most PAH levels reported in a number of investigations from different countries and regions. PAH isomer ratios indicated that pyrolytic origins, such as fossil fuel combustion related to vehicle tail gas and industrial emissions, were the dominant sources of PAH in the southern subtropical areas of China. Although PAH concentrations decreased with decreasing pollution, population, and traffic density, to a great extent PAH compositions were similar throughout subtropical soils, with naphthalene, phenanthrene, fluoranthene, and benzo(b)fluoranthene being dominant.
基金Supported by the National High Technology Research and Development Program(863 Program)of China(No.2012AA06A201)the Cooperation Program of the Beijing Branch of Chinese Academy of Sciences and the Beijing Academy of Science and Technology of China(No.PXM2010-178203-096006)
文摘Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum。
文摘Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.