期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Poly(lactic-co-glycolic acid)-based composite bone-substitute materials 被引量:21
1
作者 Duoyi Zhao Tongtong Zhu +4 位作者 Jie Li Liguo Cui Zhiyu Zhang Xiuli Zhuang Jianxun Ding 《Bioactive Materials》 SCIE 2021年第2期346-360,共15页
Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-gly... Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-glycolic acid)(PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility,degradability,mechanical properties,and capabilities to promote bone regeneration.In this article,we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances,elaborate on their applications for bone regeneration with or without bioactive factors,and prospect the challenges and opportunities in clinical bone regeneration. 展开更多
关键词 poly(lactic-co-glycolic acid) composite organic−inorganic biomaterial Bone-substitute material Bone tissue engineering Bone regeneration
原文传递
Inhalable oridonin-loaded poly(lactic-co-glycolic)acid large porous microparticles for in situ treatment of primary non-small cell lung cancer 被引量:9
2
作者 Lifei Zhu Miao Li +2 位作者 Xiaoyan Liu Lina Du Yiguang Jin 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2017年第1期80-90,共11页
Non-small cell lung cancer(NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glyco... Non-small cell lung cancer(NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolic)acid(PLGA) large porous microparticle(LPMP) for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of 10 mm, the aerodynamic diameter of the spheres was only 2.72 mm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGALPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer. 展开更多
关键词 Large porous microparticle Non-small cell lung cancer Oridonin poly(lactic-co-glycolic) acid Pulmonary delivery
原文传递
Preparation of Tolterodine Metabolite Loaded Biodegradable PLGA Microspheres 被引量:8
3
作者 TENG Le-sheng JIANG Chao-jun LIN Xiang-you DONG Yuan-chen LI Chun-mei MENG Qing-fan LI You-xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第1期75-80,共6页
Biodegradable polymer poly(lactic-co-glycolic acid)(PLGA) was used to encapsulate the pharmacological activity metabolite of tolterodine by means of O/W emulsion solvent evaporation method via homogenization in th... Biodegradable polymer poly(lactic-co-glycolic acid)(PLGA) was used to encapsulate the pharmacological activity metabolite of tolterodine by means of O/W emulsion solvent evaporation method via homogenization in the emulsification process. The influences of preparation parameters were investigated. The results indicate that increa- sing PLGA concentration from 15% to 40% made the encapsulation efficiency of 5-hydroxymethyl derivative of tol- terodine(5-HMT) increased from 55.39% to 76.32%, and the particle size increased from 34.33 μm to 70,78 lain. In addition, when homogenization speed increased from 850 r/min to 2300 r/min, both particle size and encapsulation efficiency of microspheres decreased. An increase in the volume of aqueous phase led to higher encapsulation efficiency and bigger particle size. Increasing temperature made encapsulation efficiency and particle size change significantly. While reaction temperature increased from 20 ℃ to 50 ℃, the encapsulation efficiency decreased from 70.44% to 24.07%, and particle size increased from 38.66 μm to 69.38 μm. High reaction temperature(over 40 ℃) may lead to porous surface of microspheres. Porous surface, encapsulation efficiency and particle size influenced on the in vitro release of 5-HMT together. 展开更多
关键词 polylactic-co-glycolic acid) MICROSPHERE TOLTERODINE Tolterodine metabolite
下载PDF
Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum 被引量:8
4
作者 ZHENG Yi-xiong RINGE Jochen +3 位作者 LIANG Zhong LOCH Alexander CHEN Li SITTINGER Michael 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期817-824,共8页
The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation o... The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type Ⅰ collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules ofneo-bone tissue formation and the presence of matrix mineralization were confirmed by positive yon Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo. 展开更多
关键词 Tissue engineering poly-lactic-co-glycolic acid polymer Periosteum-derived progenitor cells 3-dimensional culture
下载PDF
Electrospun and woven silk fibroin/poly(lactic-coglycolic acid) nerve guidance conduits for repairing peripheral nerve injury 被引量:7
5
作者 Ya-ling Wang Xiao-mei Gu +2 位作者 Yan Kong Qi-lin Feng Yu-min Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1635-1642,共8页
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-... We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application. 展开更多
关键词 nerve regeneration peripheral nerve injury polylactic-co-glycolic acid) electrospinning silk fibroin biocompatibility nerve guidance conduit weaving
下载PDF
A novel artificial nerve graft for repairing longdistance sciatic nerve defects:a self-assembling peptide nanofiber scaffold-containing poly (lactic-co-glycolic acid) conduit 被引量:5
6
作者 Xianghai Wang Mengjie Pan +7 位作者 Jinkun Wen Yinjuan Tang Audra D.Hamilton Yuanyuan Li Changhui Qian Zhongying Liu Wutian Wu Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2132-2141,共10页
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-... In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury. 展开更多
关键词 nerve regeneration peripheral nerve defect artificial nerve graft polylactic-co-glycolic acid) self-assembling peptide nanofiber scaffold REMYELINATION axon myelin neuromuscular junction NSFC grants neural regeneration
下载PDF
抗结核药物复合支架的制备及其性能研究 被引量:6
7
作者 张世旺 马远征 +4 位作者 杨飞 李大伟 刘宝霞 王天天 雷鹏蛟 《中国脊柱脊髓杂志》 CAS CSCD 北大核心 2014年第3期266-270,共5页
目的:制备抗结核药物复合支架,并观察其载药性能、药物释放性能和组织相容性。方法:应用乳酸-羟基乙酸共聚物(PLGA)、磷酸三钙(β-TCP)、异烟肼(INH),通过结合相分离/粒子沥滤法制备成复合药物支架。采用扫描电镜观察支架的... 目的:制备抗结核药物复合支架,并观察其载药性能、药物释放性能和组织相容性。方法:应用乳酸-羟基乙酸共聚物(PLGA)、磷酸三钙(β-TCP)、异烟肼(INH),通过结合相分离/粒子沥滤法制备成复合药物支架。采用扫描电镜观察支架的形貌;测定支架的孔隙率;在体外测定支架的生物力学强度、载药率、包封率以及药物释放特性;将复合支架(PLGA/β-TCP/INH)埋入大鼠肌肉中,4周后取材固定、染色行组织切片观察其组织相容性。结果:PLGA/β-TCP/INH复合支架表面及内部呈均匀多孔状,孔隙分布较均匀,在大孔的周围布满了相互贯通的微孔,外形多为近似圆形,大孔直径约150~300μm,平均222±23μm,小孔直径约10μm;孔隙率为(86±3)%;抗压强度为1.93±0.65MPa,药物包封率为(66.73±2.65)%;在体外药物释放过程较平稳,其释放曲线较平滑;组织学检查显示埋入大鼠肌肉中4周支架周围组织正常,细胞无变性坏死。结论:PLGA/β-TCP/INH复合支架具有良好的孔隙率、力学强度、释药特性和组织相容性,有望在脊柱结核病灶清除术后利用其修复骨缺损的同时发挥局部抗结核治疗作用。 展开更多
关键词 脊柱结核 抗结核药 药物载体 乳酸-羟基乙酸共聚物 磷酸三钙
下载PDF
MMAE-loaded PLGA nanomedicine with improved biosafety to achieve efficient antitumor treatment
8
作者 Changqiang Xie Yan Wang +4 位作者 Zhenzhen Cai Jianghai Du Zhengyu Chen Junjie Wang Xingzhou Peng 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期79-93,共15页
Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody dru... Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody drug conjugate(ADC)of MMAE is currently used in clinical practice.However,the safety issues of MMAE-based ADC,such as high drug toxicity and poor bioavailability,still exist when using it for anticancer therapy.A sustained release of drug delivery approach should be used to reduce toxicity and achieve sufficient anticancer effects.Herein,PLGA-b-PEG 2000 with excellent biocompatibility and slow degradation ability was adopted to construct MMAE-loaded nanoparticles for safe and effective chemotherapy.The sustained release effect and the immunogenic cell death(ICD)effect of PLGA-MMAE nanoparticles were assessed by in vitro experiments.The PLGA-MMAE nanoparticles effectively accumulated in the tumor through the enhanced permeability and retention(EPR)effect,inducing cell apoptosis and causing a certain degree of immune response.The sustained drug release of PLGA-MMAE improved the bioavailability and effectively reduced the toxicity and development of the tumor compared to the effect of free MMAE or ADC.Overall,this study provides a safe and effective chemotherapeutic approach,as well as a simple and effective synthetic process for MMAE-based nanoparticles,improving their therapeutic efficacy and safety. 展开更多
关键词 Monomethyl auristatin E poly(lactic-co-glycolic acid)nanoparticles sustained release CHEMOTHERAPY immunogenic cell death
下载PDF
Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts 被引量:3
9
作者 Jingchen Gao Siyuan Chen +3 位作者 Di Tang Li Jiang Jie Shi Shufang Wang 《Transactions of Tianjin University》 EI CAS 2019年第2期152-160,共9页
In our study, the mechanical properties and degradability of vascular grafts made from poly(ε-caprolactone)(PCL) and poly(lactic-co-glycolic acid)(PLGA) at different ratios were investigated. The results showed that ... In our study, the mechanical properties and degradability of vascular grafts made from poly(ε-caprolactone)(PCL) and poly(lactic-co-glycolic acid)(PLGA) at different ratios were investigated. The results showed that the electrospun PCL/PLGA grafts possess good mechanical properties and biodegradability. The tensile and burst strength of the scaffolds met the demands of vascular grafts. In vitro degradation tests indicated that the degradation rate of the materials increased with the percentage of PLGA, and in vivo tests showed that increasing the amount of PLGA is an effective way to promote cell infiltration. Particularly, the electrospun PCL/PLGA blended scaffold with 10% PLGA exhibited a balance of mechanical and degradation properties, making it a promising tissue engineering material for vascular grafts. 展开更多
关键词 ELECTROSPINNING poly(ε-caprolactone) poly(lactic-co-glycolic acid) Mechanical properties BIODEGRADABILITY
下载PDF
Synthesis,Characterization and Application of Poly(lactic-co-glycolic acid)with a Mass Ratio of Lactic to Glycolic Segments of 52/48 被引量:1
10
作者 QIN Chang DONG Jing +7 位作者 XIE Beibei WANG Hongkun ZHANG Na ZHAO Chunhua QIAO Congde LIU Mingxia YANG Xiaodeng LI Tianduo 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第2期290-295,共6页
Poly(lactic-co-glycolic acid)(PLGA)is one of the most representative degradable copolymers and promising drug carriers.In the current paper,the PLGAs with a lactic acid/glycolic acid(LA/GA)molar ratio of 52/48 and var... Poly(lactic-co-glycolic acid)(PLGA)is one of the most representative degradable copolymers and promising drug carriers.In the current paper,the PLGAs with a lactic acid/glycolic acid(LA/GA)molar ratio of 52/48 and various molecular weights were prepared by a melting method.The molecular weight,molecular weight distribution,and thermal stability were determined by 1H NMR and thermogravimetric analysis methods.The results demonstrated that PLGAs with the fixed LA/GA molar ratio(52/48),different molecular weights,and narrow molecular weight distribution could be obtained by solely altering the reaction time.The PLGA films were prepared,and their properties including micro-structure,mechanical property,in-vitro cytotoxicity,and biodegradability were characterized.In combination with the homogeneous microstructures and mechanical properties,the drug-loading and releasing properties of PLGA3.2 films were investigated.The results show that PLGA3.2 film with an LA/GA molar ratio of 52/48 is a promising curcumin carrier. 展开更多
关键词 poly(lactic-co-glycolic acid) Mechanical property PLGA film Drug carrier
原文传递
槲皮素-PLGA嵌段共聚物纳米粒冻干粉的制备及体外释放性能考察 被引量:5
11
作者 闫鑫 吕邵娃 +5 位作者 郭玉岩 郭雪莹 王瑛琦 解鹏宇 李永吉 孙爽 《中国实验方剂学杂志》 CAS CSCD 北大核心 2016年第14期10-13,共4页
目的:制备槲皮素-(聚乳酸-羟基乙酸共聚物)嵌段共聚物(QC-PLGA)纳米粒冻干粉并考察其体外释放规律。方法:采用乳化溶剂挥发法制备QC-PLGA纳米粒,通过正交试验确定最优处方工艺,通过单因素试验筛选冻干保护剂,通过动态透析技术考察QC-PLG... 目的:制备槲皮素-(聚乳酸-羟基乙酸共聚物)嵌段共聚物(QC-PLGA)纳米粒冻干粉并考察其体外释放规律。方法:采用乳化溶剂挥发法制备QC-PLGA纳米粒,通过正交试验确定最优处方工艺,通过单因素试验筛选冻干保护剂,通过动态透析技术考察QC-PLGA纳米粒冻干粉的体外释药规律。结果:最佳制备工艺为0.2%聚乙烯醇,PLGA质量浓度10 g·L^(-1),油/水相体积比1∶35,槲皮素用量5 mg,冻干保护剂为2%乳糖。QC-PLGA纳米粒冻干粉的外表光滑,形态无皱缩塌陷、结构致密且加入注射用水振摇后再分散性良好,体外释放规律基本符合Weibull方程的释药模型,释药动力学方程ln[ln(1/1-Q)]=0.399lnt-1.503(R^2=0.973)。结论:QC-PLGA纳米粒冻干粉制备工艺简单可行、性质稳定、易储存,相比槲皮素原料药具有明显的缓释作用。 展开更多
关键词 槲皮素 纳米粒 冷冻干燥法 体外释放度 聚乳酸-羟基乙酸共聚物
原文传递
Sugar-fiber Imprinting to Generate Microgrooves on Polymeric Film Surfaces for Contact Guidance of Cells 被引量:3
12
作者 屈泽华 丁建东 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第10期2292-2296,共5页
Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomateria... Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomaterials. Herein, we put forward a sugar-fiber imprinting technique to generate microgrooves on hydrophobic polymers demonstrated by the poly(lactic-eo-glycolic acid) (PLGA) films. Microgrooves were conveniently generated after removing sugar fibers simply by water. The resulting locally anisotropic microgrooves were confirmed to elongate the cells cultured on the surface. 展开更多
关键词 polymers BIOMATERIALS surface modification contact guidance of cells polylactic-co-glycolic acid)(PLGA) sugar fibers
原文传递
Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats 被引量:3
13
作者 Li Zhao Wei Qu +2 位作者 Yuxuan Wu Hao Ma Huajun Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1961-1967,共7页
Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are compl... Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (〉95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects. 展开更多
关键词 nerve regeneration Schwann cells dorsal root ganglia melanocyte medium FIBROBLASTS polylactic-co-glycolic acid) CHITOSAN sciatic nerve defect NSFC grants neural regeneration
下载PDF
Multilayer Coating of Tetrandrine-loaded PLGA Nanoparticles: Effect of Surface Charges on Cellular Uptake Rate and Drug Release Profile 被引量:2
14
作者 孟睿 李珂 +1 位作者 陈喆 史琛 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第1期14-20,共7页
The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid)(PLGA) nanoparticles(TPNs) was studied. Stabilizer-free nanoprecipitation met... The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid)(PLGA) nanoparticles(TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt(PSS) as anionic layer and poly(allylamine hydrochloride)(PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs(4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of –57.8 m V. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs(4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery. 展开更多
关键词 multilayer tetrandrine polylactic-co-glycolic acid) nanoparticles cellular uptake
下载PDF
Doxorubicin-loaded PLGA Microparticles with Internal Pores for Longacting Release in Pulmonary Tumor Inhalation Treatment 被引量:2
15
作者 Tian-shi Feng 田华雨 +4 位作者 Cai-na Xu Lin Lin Michael Hon-Wah Lam Hao-jun Liang Xue-si Chen 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第7期947-954,共8页
Doxorubicin(DOX) loaded poly(lactic-co-glycolic acid)(PLGA) microparticles with internal pores(MP-D) were developed for long-acting release in pulmonary inhalation treatment. The PLGA microparticles exhibited ... Doxorubicin(DOX) loaded poly(lactic-co-glycolic acid)(PLGA) microparticles with internal pores(MP-D) were developed for long-acting release in pulmonary inhalation treatment. The PLGA microparticles exhibited favorable aerodynamic properties for pulmonary delivery. In vitro drug release profile suggested that MP-D have the advantage of long-term maintenance of drug concentrations. MTT assay demonstrated the in vitro anti-tumor efficiency of the DOX loaded PLGA microparticles. Furthermore, melanoma lung metastasis model was established to determine the in vivo antitumor efficiency. The mice treated with MP-D showed significantly fewer lesions than the untreated ones. The survival analysis indicated that MP-D prolonged the survival time of tumor-bearing mice. These results suggested that DOX loaded PLGA microparticles with internal pores have the potential to be used as long-acting release carriers in clinical lung cancer treatment. 展开更多
关键词 Doxorubicin polylactic-co-glycolic acid) Internal pores Long-acting release Pulmonary inhalation
原文传递
Fabrication, Crosslinking and in vitro Biocompatibility of a Novel Degradable Nano-structure Urethral Tubular Scaffold 被引量:2
16
作者 WANG Xiao-qing CHEN Qi-hui +7 位作者 HOU Yu-chuan LU Zhi-hua HU Jing-hai ZHANG Hai-feng HAO Yuan-yuan ZHANG Long GAO Zhan-tuan WANG Chun-xi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期912-915,共4页
A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutara... A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutaraldehyde. The structure and properties of the crosslinked scaffolds were investigated by the mechanical property testing, scanning electron microscopy(SEM), degradability test in vitro and 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-diphenytetrazo- liumromide(MTT). The results show that the scaffold has the nano-structure. The pore size and the porosity are suitable for cell seeding, growth and extracellular matrix production. Although influenced by the crosslinking slightly, the pore size and the porosity could still support cell proliferation and tissuse formation. The mechanical properties are remarkably increased by the crosslinking of glutaraldehyde, and it could meet the demands of a urethral stent. The scaffold could completely collapse within 70 d. The results of the biocompatibility test show that the PLGA scaffold had no cytotoxicity. 展开更多
关键词 polylactic-co-glycolic acid) Urethral scaffold DEGRADABLE Electrospin CROSSLINKING
下载PDF
Influence of 3D Microgrooves on C2C12 Cell Proliferation,Migration,Alignment,F-actin Protein Expression and Gene Expression 被引量:2
17
作者 Huichang Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期901-908,共8页
In this paper, we fabricated three kinds of 3D microgrooves with different depth on biocompatible poly(lactic-co-glycolic acid) (PLGA) substrate via combination of soft-lithography and melt-casting methods, and in... In this paper, we fabricated three kinds of 3D microgrooves with different depth on biocompatible poly(lactic-co-glycolic acid) (PLGA) substrate via combination of soft-lithography and melt-casting methods, and investigated in detail their influence on C2C12 cell behaviors. It is found that cell proliferation, migration, alignment, spatial distribution, F-actin protein expression and gene expression are all remarkably distinct on these microgrooved samples and the smooth control PLGA substrate. The associated underlying mechanisms were further analyzed and discussed using real-time living cell monitoring, confocal laser scanning microscopy and gene microarray. Our preliminary results suggested that 3D microstruc- ture could affect cell behaviors in a much more extensive manner than what we had understood before. 展开更多
关键词 Cell behaviors3D microgroove polylactic-co-glycolic acid)Cytoskeleton Gene microarray Real-time living cell monitoring
原文传递
RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering 被引量:3
18
作者 Yong Cheol Shin Jeonghyo Kim +7 位作者 Sung Eun Kim Su-Jin Song SuckWon Hong Jin-Woo Oh Jaebeom Lee Jong-Chul Park Suong-Hyu Hyon Dong-Wook Han 《Regenerative Biomaterials》 SCIE 2017年第3期159-166,共8页
In recent years,much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors.In our study,RGD peptide and graphene oxide(GO)co-functionalized poly(lac... In recent years,much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors.In our study,RGD peptide and graphene oxide(GO)co-functionalized poly(lactide-co-glycolide,PLGA)(RGD-GO-PLGA)nanofiber mats were fabricated via electrospinning,and their physicochemical and thermal properties were characterized to explore their potential as biofunctional scaffolds for vascular tissue engineering.Scanning electron microscopy images revealed that the RGD-GO-PLGA nanofiber mats were readily fabricated and composed of randomoriented electrospun nanofibers with average diameter of 558nm.The successful co-functionalization of RGD peptide and GO into the PLGA nanofibers was confirmed by Fourier-transform infrared spectroscopic analysis.Moreover,the surface hydrophilicity of the nanofiber mats was markedly increased by co-functionalizing with RGD peptide and GO.It was found that the mats were thermally stable under the cell culture condition.Furthermore,the initial attachment and proliferation of primarily cultured vascular smoothmuscle cells(VSMCs)on the RGD-GO-PLGA nanofibermats were evaluated.It was revealed that the RGD-GO-PLGA nanofibermats can effectively promote the growth of VSMCs.In conclusion,our findings suggest that the RGD-GO-PLGA nanofiber mats can be promising candidates for tissue engineering scaffolds effective for the regeneration of vascular smooth muscle. 展开更多
关键词 RGD peptide graphene oxide poly(lactic-co-glycolic acid) biofunctional scaffold vascular smooth muscle cell
原文传递
Controlled release of cisplatin and cancer cell apoptosis with cisplatin encapsulated poly(lactic-co-glycolic acid) nanoparticles 被引量:1
19
作者 A. Champa Jayasuriya Anthony J. Darr 《Journal of Biomedical Science and Engineering》 2013年第5期586-592,共7页
The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used ... The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) to prepare the NPs by adjusting the double emulsion technique using poly(vinylalcohol) as a surface active agent. The PLGA NPs were characterized for particle size and shape, controlled release of cisplatin, and degradation. Cisplatin solubility in deionized water was increased up to 4 mg/mL by simply changing the solution parameters. Cisplatin encapsulated NPs were incubated in phosphate buffered saline (PBS) at 37?C to study the release kinetics of cisplatin. Cisplatin was released in a sustained manner with less than 20% release during a 3-day period followed by 50% release during a 21-day period. A degradation study of PLGA NPs demonstrated the loss of spherical shape during a 21-day period. We also examined the cisplatin sensitive A2780 cell apoptosis when cells were incubated with cisplatin encapsulated PLGA NPs. A large number of cell apoptosis occurred as a result of cisplatin release from the PLGA NPs. These results suggest that cisplatin encapsulated PLGA NPs can be used to treat the cancer cells by injecting them into a localized site minimizing the side effects. 展开更多
关键词 NANOPARTICLES CISPLATIN poly(lactic-co-glycolic Acid) controlled Release Cancer Apopotosis
下载PDF
Synthesis and Characterization of UPPE-PLGA-rhBMP2 Scaffolds for Bone Regeneration 被引量:1
20
作者 田志超 朱元莉 +5 位作者 邱进俊 关邯峰 李亮宇 郑守超 董学海 肖骏 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期563-570,共8页
A novel unsaturated polyphosphoester(UPPE) was devised in our previous research,which is a kind of promising scaffold for improving bone regeneration.However,the polymerization process of UPPE scaffolds was unfavorabl... A novel unsaturated polyphosphoester(UPPE) was devised in our previous research,which is a kind of promising scaffold for improving bone regeneration.However,the polymerization process of UPPE scaffolds was unfavorable,which may adversely affect the bioactivity of osteoinductive molecules added if necessary,such as recombinant human bone morphogenetic protein-2(rhBMP2).The purpose of this study was to build a kind of optimal scaffold named UPPE-PLGA-rhBMP2(UPB) and to investigate the bioactivity of rhBMP2 in this scaffold.Furthermore,the cytotoxicity and biocompatibility of UPB scaffold was assessed in vitro.A W1/O/W2 method was used to fabricate PLGA-rhBMP2 microspheres,and then the microspheres were added to UPPE for synthesizing UPB scaffold.The morphological characters of PLGA-rhBMP2 microspheres and UPB scaffolds were observed under the scanning electron microscopy and laser scanning confocal microscopy.The cumulative release of UPB scaffolds was detected by using ELISA.The cytotoxicity and biocompatibility of UPB scaffolds were evaluated through examining the adsorption and apoptosis of bone marrow stromal cells(bMSCs) seeded on the surface of UPB scaffolds.The bioactivity of rhBMP2 in UPB scaffolds was assessed through measuring the alkaline phosphates(ALP) activity in bMSCs seeded.The results showed that UPB scaffolds sequentially exhibited burst and sustained release of rhBMP2.The cytotoxicity was greatly reduced when the scaffolds were immersed in buffer solution for 2 h.bMSCs attached and grew on the surface of soaked UPB scaffolds,exerting well biocompatibility.The ALP activity of bMSCs seeded was significantly enhanced,indicating that the bioactivity of rhBMP2 remained and still took effect after the unfavorable polymerization process of scaffolds.It was concluded that UPB scaffolds have low cytotoxicity,good biocompatibility and preserve bioactivity of rhBMP2.UPB scaffolds are promising in improving bone regeneration. 展开更多
关键词 poly(lactic-co-glycolic acid) microspheres bone morphogenetic protein-2 unsaturated polyphosphoester bone regeneration
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部