The electrocatalytic properties of platinum microparticles incorporated into poly-(vinylpyridine) (PVP) films, a conducting polymer with good conductivity and stability, were investigated for hydrogen evolution and fo...The electrocatalytic properties of platinum microparticles incorporated into poly-(vinylpyridine) (PVP) films, a conducting polymer with good conductivity and stability, were investigated for hydrogen evolution and formic acid electrooxidation in acidic media. It wasfound that the catalytic effects depend mainly on the size and amounts of the platinummicroparticles dispersed in the polymer layer.展开更多
The extent to which counterions bind to polyelectrolytes influences a variety of polymer-based applications, including polyelectrolyte enhanced ultrafiltration and forward osmosis using polyelectrolytes as draw agents...The extent to which counterions bind to polyelectrolytes influences a variety of polymer-based applications, including polyelectrolyte enhanced ultrafiltration and forward osmosis using polyelectrolytes as draw agents. Potentiometric titrations of poly (2-vinylpyridine) (P2VP), poly (3-vinylpyridine) (P3VP), and poly (4-vinylpydine) (P4VP) were performed using HBr, HCl, HNO<sub>3</sub>, and HClO<sub>4</sub> in both the presence and absence of added NaCl. Because of the systematic differences among the three polyelectrolytes, titration results provide insight into the role of polymer structure in the relative extents to which various counterions bind. Titration data reveal that ionization properties vary as functions of polymer investigated, titrant used, degree of protonation, and added salt concentration. Acid dissociation constants of the pyridinium moieties were found to generally increase with increasing degree of protonation, though appreciable differences were exhibited among the three polymers investigated. For all three polymers, Cl<sup>-</sup> demonstrated the lowest affinity for the charged pyridinium residues, while the affinities associated with Br<sup>-</sup> and NO<sup>-</sup>3</sub> were nearly identical to each other. The relative extent of binding for CIO<sup>-</sup>4</sub> varied across the polymers investigated, and was greatest for P4VP.展开更多
Sulfonated poly(4-vinylpyridine) heteropolyacid salts acted as a heterogeneous catalyst to effectively catalyze the one-pot synthesis of β-amino carbonyl compounds via the Mannich reaction between aromatic aldehyde...Sulfonated poly(4-vinylpyridine) heteropolyacid salts acted as a heterogeneous catalyst to effectively catalyze the one-pot synthesis of β-amino carbonyl compounds via the Mannich reaction between aromatic aldehydes, aromatic ketone, and aromatic amines. In addition, the catalyst could be easily recovered by the filtration and reused six times without significant loss of catalytic activity.展开更多
The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the c...The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.展开更多
文摘The electrocatalytic properties of platinum microparticles incorporated into poly-(vinylpyridine) (PVP) films, a conducting polymer with good conductivity and stability, were investigated for hydrogen evolution and formic acid electrooxidation in acidic media. It wasfound that the catalytic effects depend mainly on the size and amounts of the platinummicroparticles dispersed in the polymer layer.
文摘The extent to which counterions bind to polyelectrolytes influences a variety of polymer-based applications, including polyelectrolyte enhanced ultrafiltration and forward osmosis using polyelectrolytes as draw agents. Potentiometric titrations of poly (2-vinylpyridine) (P2VP), poly (3-vinylpyridine) (P3VP), and poly (4-vinylpydine) (P4VP) were performed using HBr, HCl, HNO<sub>3</sub>, and HClO<sub>4</sub> in both the presence and absence of added NaCl. Because of the systematic differences among the three polyelectrolytes, titration results provide insight into the role of polymer structure in the relative extents to which various counterions bind. Titration data reveal that ionization properties vary as functions of polymer investigated, titrant used, degree of protonation, and added salt concentration. Acid dissociation constants of the pyridinium moieties were found to generally increase with increasing degree of protonation, though appreciable differences were exhibited among the three polymers investigated. For all three polymers, Cl<sup>-</sup> demonstrated the lowest affinity for the charged pyridinium residues, while the affinities associated with Br<sup>-</sup> and NO<sup>-</sup>3</sub> were nearly identical to each other. The relative extent of binding for CIO<sup>-</sup>4</sub> varied across the polymers investigated, and was greatest for P4VP.
基金supported by Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities(No.XZ1011)the President's Funds of Hexi University(No.XZ-2009-9)+1 种基金Gansu Engineering Laboratory of Applied Mycologythe National Science Foundation of China(No.21262010)
文摘Sulfonated poly(4-vinylpyridine) heteropolyacid salts acted as a heterogeneous catalyst to effectively catalyze the one-pot synthesis of β-amino carbonyl compounds via the Mannich reaction between aromatic aldehydes, aromatic ketone, and aromatic amines. In addition, the catalyst could be easily recovered by the filtration and reused six times without significant loss of catalytic activity.
基金Supported by the Outstanding Youngs Science Foudation of Henan Province(1999)
文摘The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.