A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three- step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RA...A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three- step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications.展开更多
It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously...It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21274084)
文摘A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three- step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications.
基金supported by the National Natural Science Foundation of China (Nos. 21325417, 51533008, and 51703194)National Key R&D Program of China (No. 2016YFA0200200)Fundamental Research Funds for the Central Universities (Nos. 2017QNA4036 and 2017XZZX008-06)
文摘It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.