The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materi...The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.展开更多
In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increas...In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increases from 0.17 to 0.34 at 875 K for Co0.95Zn0.05SbS0.85Se0.15 sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye-Callaway- Klemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.展开更多
基金This work was supported by the "863" program (No. 2003AA322020)
文摘The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.
基金financially supported by the National Natural Science Foundation of China (Nos. 11344010. 11404044 and 51472036)the Fundamental Research Funds for the Central Universities (No. 106112016CDJZR308808)
文摘In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increases from 0.17 to 0.34 at 875 K for Co0.95Zn0.05SbS0.85Se0.15 sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye-Callaway- Klemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.