期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Nonexistence Result for Choquard-Type Hamiltonian System
1
作者 Zexi Wang 《Journal of Applied Mathematics and Physics》 2023年第3期608-617,共10页
In this article, we establish a nonexistence result of nontrivial non-negative solutions for the following Choquard-type Hamiltonian system by the Pohožaev identity , when , , , , , and , where and denotes the convolu... In this article, we establish a nonexistence result of nontrivial non-negative solutions for the following Choquard-type Hamiltonian system by the Pohožaev identity , when , , , , , and , where and denotes the convolution in . 展开更多
关键词 NONEXISTENCE Choquard-Type Hamiltonian System pohožaev identity
下载PDF
R^(4)中一类Kirchhoff方程的高能量径向解的存在性
2
作者 杨金富 张家锋 《四川轻化工大学学报(自然科学版)》 CAS 2023年第2期93-100,共8页
为解决物理领域中用来描述弹性弦在横向振动过程中弦长变化模型的求解问题,基于变分方法,研究了一类具有一般非线性项的a+b型Kirchhoff方程高能量径向解的存在性问题。通过选择合适的变分框架,首先,一方面给出了一般非线性项f满足的一... 为解决物理领域中用来描述弹性弦在横向振动过程中弦长变化模型的求解问题,基于变分方法,研究了一类具有一般非线性项的a+b型Kirchhoff方程高能量径向解的存在性问题。通过选择合适的变分框架,首先,一方面给出了一般非线性项f满足的一般性条件且给出了满足条件的具体例子,另一方面通过放缩构造了与该Kirchhoff方程有关的两个能量泛函;其次,借助Pohožaev恒等式来构造具有特殊性质的序列以解决Palais-Smale序列的有界性问题;最后,利用对称山路引理建立该类Kirchhoff方程高能量径向解的存在性结果。 展开更多
关键词 KIRCHHOFF方程 对称山路引理 pohožaev恒等式 高能量径向解
下载PDF
Existence of Sign-Changing Solution with Least Energy for a Class of Schrödinger-Poisson Equations in R<sup>3</sup>
3
作者 Yaolan Tang Qiongfen Zhang 《Journal of Applied Mathematics and Physics》 2021年第10期2483-2499,共17页
The nodal solutions of equations are considered to be more difficult than the positive solutions and the ground state solutions. Based on this, this paper intends to study nodal solutions for a kind of Schr<span st... The nodal solutions of equations are considered to be more difficult than the positive solutions and the ground state solutions. Based on this, this paper intends to study nodal solutions for a kind of Schr<span style="white-space:nowrap;">&#246;</span>dinger-Poisson equation. We consider a class of Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>dinger-Poisson equation with variable potential under weaker conditions in this paper. By introducing some new techniques and using truncated functional, Hardy inequality and Poho<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#382;</span></span>aev identity, we obtain an existence result of a least energy sign-changing solution and a ground state solution for this kind of Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>dinger-Poisson equation. Moreover, the energy of the sign-changing solution is strictly greater than the ground state energy. 展开更多
关键词 Schrödinger-Poisson System Sign-Changing Solution Ground State Solution pohožaev identity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部