Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to...Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05015001-001,2016ZX05033-003-002)
文摘Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.