期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多点地质统计学中训练图像优选方法及其在地质建模中的应用 被引量:15
1
作者 王立鑫 尹艳树 +3 位作者 冯文杰 段太忠 赵磊 张文彪 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2019年第4期703-709,共7页
在前人提出的高阶兼容性优选方法的基础上,提出一种基于数据事件重复概率的训练图像优选方法。其基本思路是提取条件数据中蕴含的数据事件,统计所提取的数据事件在训练图像中的重复次数并计算其重复概率,得到数据事件的无匹配率及其重... 在前人提出的高阶兼容性优选方法的基础上,提出一种基于数据事件重复概率的训练图像优选方法。其基本思路是提取条件数据中蕴含的数据事件,统计所提取的数据事件在训练图像中的重复次数并计算其重复概率,得到数据事件的无匹配率及其重复概率方差两个统计指标,用于表征训练图像中沉积模式的多样性与平稳性,评价其与建模区井数据蕴含的地质体空间结构的匹配性。无匹配率反映训练图像内地质模式的完备性,为首选指标;重复概率方差反映训练图像内地质模式的平稳性,为辅助指标,综合以上两种指标实现了对训练图像的优选。多组理论模型测试表明,重复概率方差小、无匹配率低的训练图像为最优训练图像。运用该方法对安哥拉Plutonio油田浊积水道训练图像进行优选,结果表明所建立的地质模型与地震属性吻合度高,能够更好地刻画水道的形态特征及砂体的分布模式。 展开更多
关键词 训练图像 数据事件 重复概率 多点地质统计 安哥拉 plutonio油田 浊积水道
下载PDF
A training image optimization method in multiple-point geostatistics and its application in geological modeling
2
作者 WANG Lixin YIN Yanshu +3 位作者 FENG Wenjie DUAN Taizhong ZHAO Lei ZHANG Wenbiao 《Petroleum Exploration and Development》 2019年第4期739-745,共7页
Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to... Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands. 展开更多
关键词 training image data EVENT REPETITION probability multiple-point GEOSTATISTICS ANGOLA plutonio oilfield TURBIDITE channel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部