Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution o...Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution of the Zanda Basin during the Pliocene to Early Pleistocene was classified as six stages: (a) primary rift-faulting stage, (b) quick rift-faulting Stage, (c) intensive rift-faulting stage, (d) stasis stage, (e) secondary rift-faulting stage, and (f) secondary quick rift-faulting stage. Based on this six-staged formation-evolution theory of the Zanda Basin, the upwelling process of the Western Himalaya Mountains from the Pliocene to Early Pleistocene was classified as the following five stages: (a) slow upwelling stage (5.4-4.4 Ma), (b) mid-velocity upwelling stage (4.4-3.5 Ma), (c) quick upwelling stage (3.5-3.2 Ma), (d) upwelling-ceasing stage (3.2-2.7 Ma), and (e) quick upwelling stage (2.7 Ma). Research has shown that in the duration from the Early Pliocene (4.7 Ma) to the End of Pliocene (2.67 Ma), which lasted 2.03 million years, the Himalaya Mountains had uplifted 1500 m at a velocity of 0.74 mm/a; this belongs to a mid-velocity upwening. During the 1.31 million years in the Early Stage of the Early Pleistocene, the Himalaya Mountains had risen up another 1500 m at a velocity of 1.15 mm/a; this is a rather quick upwelling. All of these data have shown that the upwelling of the Western Himalaya Mountains is along a complicated process with multi-stages, multi-velocities, and non-uniformitarian features.展开更多
基金supported by the National Natural Science Foundation Project(Grant No.40572134)the China Geological Survey Projects"The Key Tertiary Ancient Lakes Environmental Evolution Series of China's Qinghai-Tibet Plateau"(Grant No.Science[2005]005-02+2 种基金1212010511902)"The Study of Neotectonics and Late Cenozoic Gigantic Ancient Lakes of China's Qinghai-Tibet Plateau"(Grant No.Basic[2008]Tibet 21-18Grant No. 1212010610108)
文摘Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution of the Zanda Basin during the Pliocene to Early Pleistocene was classified as six stages: (a) primary rift-faulting stage, (b) quick rift-faulting Stage, (c) intensive rift-faulting stage, (d) stasis stage, (e) secondary rift-faulting stage, and (f) secondary quick rift-faulting stage. Based on this six-staged formation-evolution theory of the Zanda Basin, the upwelling process of the Western Himalaya Mountains from the Pliocene to Early Pleistocene was classified as the following five stages: (a) slow upwelling stage (5.4-4.4 Ma), (b) mid-velocity upwelling stage (4.4-3.5 Ma), (c) quick upwelling stage (3.5-3.2 Ma), (d) upwelling-ceasing stage (3.2-2.7 Ma), and (e) quick upwelling stage (2.7 Ma). Research has shown that in the duration from the Early Pliocene (4.7 Ma) to the End of Pliocene (2.67 Ma), which lasted 2.03 million years, the Himalaya Mountains had uplifted 1500 m at a velocity of 0.74 mm/a; this belongs to a mid-velocity upwening. During the 1.31 million years in the Early Stage of the Early Pleistocene, the Himalaya Mountains had risen up another 1500 m at a velocity of 1.15 mm/a; this is a rather quick upwelling. All of these data have shown that the upwelling of the Western Himalaya Mountains is along a complicated process with multi-stages, multi-velocities, and non-uniformitarian features.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB26000000)the State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (grant no. 173132)~~