This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite...This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
基金supported by the National Natural Science Foundation of China(Grant No 10562002)the Natural Science Foundation of Inner Mongolia,China(Grants No 200508010103 and 200711020106)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070126002)
文摘This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.