期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi_4Ti_3O_(12) nanosheets 被引量:7
1
作者 Tao Wang Xiqing Liu +4 位作者 Qiuyue Men Changchang Ma Yang Liu Wei Ma Zhi Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期886-894,共9页
Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in... Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in the Bi4Ti3O12 by transferring the plasmonic energy from the metal to the semiconductor.The surface plasmon resonance of Ag can promote the electron transfer properties of the CDs,thereby improving the separation efficiency of the electron-hole pairs.Meanwhile,the CDs can act as an electron buffer to decrease the recombination rate of the electron hole.Moreover,CDs are prepared using a biomaterial,which can provide a chemical group to enhance the electron transfer and connection.The synergistic effects of CDs,Ag,and BIT enable the design of a photocatalytic application with a remarkably improved efficiency and operational stability. 展开更多
关键词 2D material plasmo resonance Synergistic effect Carbon quantum dot Electron buffer
下载PDF
Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells 被引量:3
2
作者 Qing NI Hassan ALSHEHRI +2 位作者 Yue YANG Hong YE Liping WANG 《Frontiers in Energy》 SCIE CSCD 2018年第1期185-194,共10页
Ultrathin cells have gained increasing attention due to their potential for reduced weight, reduced cost and increased flexibility. However, the light absorption in ultrathin cells is usually very weak compared to the... Ultrathin cells have gained increasing attention due to their potential for reduced weight, reduced cost and increased flexibility. However, the light absorption in ultrathin cells is usually very weak compared to the corresponding bulk cells. To achieve enhanced photon absorption in ultrathin thermophotovoltaic (TPV) cells, this work proposed a film-coupled metamaterial structure made of nanometer-thick gallium antimonide (GaSh) layer sandwiched by a top one-dimensional (1D) metallic grating and a bottom metal film. The spectral normal absorptance of the proposed structure was calculated using the rigorous coupled-wave algorithm (RCWA) and the absorption enhancement was elucidated to be attributed to the excitations of magnetic polariton (MP), surface plasmon polariton (SPP), and Fabry-Perot (FP) resonance. The mechanisms of MP, SPP, and FP were further confirmed by an inductor-capacitor circuit model, disper- sion relation, and phase shift, respectively. Effects of grating period, width, spacer thickness, as well as incidence angle were discussed. Moreover, short-circuit current density, open-circuit voltage, output electric power,and conversion efficiency were evaluated for the ultrathin GaSb TPV cell with a film-coupled metamaterial structure. This work will facilitate the development of next- generation low-cost ultrathin infrared TPV cells. 展开更多
关键词 METAMATERIAL THERMOPHOTOVOLTAIC plasmo-nics light trapping selective absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部