Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed pla...Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed plasma thruster is a structurally simple form of electric propulsion.This simplicity also makes it ideally suited for miniaturization.Its history can be traced back to applications in satellites that are much larger than micro/nano-satellites.The vast majority of modern pulsed plasma thrusters use solid polytetrafluoroethylene(PTFE)as a propellant.Unfortunately,at lower discharge energy levels such as those necessitated by the power limitations of micro/nano-satellites,PTFE has a tendency to exhibit carbon deposition,which can ultimately lead to thruster failure.In this new era of small satellites,it is important to consider alternative propellants in the miniaturization of pulsed plasma thrusters.This brief review discusses the needs and limitations of small satellites and alternative propellants that may be able to meet these needs.Such propellants may be able to offer advantages such as a longer thruster lifetime,a higher specific impulse,or a higher thrust-topower ratio.This would enable the development of different types of pulsed plasma thrusters that can be tailored towards specific mission requirements.展开更多
The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical process...The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical processes of PPTs are described.Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures,discharge circuits,propellant materials,energy discharge method,propellant feed method,ignition method and number of thruster heads influence the PPT performance are presented and analyzed.The ignitor design method,ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs.The modeling methods of the discharge circuit,as well as ablation,ionization and acceleration in PPTs are presented.Finally,the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.展开更多
A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while t...A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.展开更多
Magnetoplasma thruster is one of the attractive plasma engines for space propulsion in future manned deep space exploration. Usually two helical antennas are equipped to produce and heat plasmas with separate radio fr...Magnetoplasma thruster is one of the attractive plasma engines for space propulsion in future manned deep space exploration. Usually two helical antennas are equipped to produce and heat plasmas with separate radio frequency sources. It is presented in this paper that a helical antenna, which is used to launch one wave mode in one direction so far, exhibits bi-directional nature, where the waves with different mode numbers are launched and couple with electrons and ions selectively in opposite directions. A two-dimensional numerical calculation is performed to predict wave propagation and power absorption in a non-uniform hydrogen plasma immersed in a non-uniform external static magnetic field, based on the hot plasma theory. It is confirmed that appropriate choice of the excitation condition of the antenna can select axial propagation direction of specific wave modes and consequently select a species that absorbs power from generated waves. A small-scale experiment is performed to confirm the prediction of the calculation. By measuring a change in electron and ion temperatures due to the wave launch from the helical antenna, it is found that both the production and heating at different axial positions are accomplished simultaneously by one antenna showing that another type of the radio frequency driven magnetoplasma thruster would be achieved.展开更多
As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at ...As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth.展开更多
Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work...Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work was to develop and characterize a PPT that does not need a spark plug to initiate the plasma discharge. If the spark plug is eliminated, the size of the thrusters can be reduced and arrays of such thrusters can be manufactured using micro electro mechanical systems (MEMS) techniques, which can provide tremendous control authority over the satellite positioning. A parallel rail thruster was built and its performances were characterized inside a vacuum chamber to elucidate the effect of vacuum level on the performance. The electrical performance of the thruster was quantified by measuring the voltage output from a Rogowski coil, and the thrust produced by the developed thruster was estimated by measuring the force exerted by the plume on a light weight pendulum, whose deflection was measured using a laser displacement sensor. It was observed that the thruster can operate without a spark plug. In general, the performance parameters such as thrust, mass ablation, impulse bit, and specific impulse per discharge, would increase with the increase in pressure up to an optimum level due to the increase in discharge energy as well as the decrease in the total impedance of the plasma discharge. The thrust efficiency is found to be affected by the discharge energy.展开更多
Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with th...Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.展开更多
To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpe...To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3×10^17 m^-3, respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8×10^17 m^-3, respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.展开更多
The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in ...The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.展开更多
利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器...利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器性能的计算结果为:20 cm ECRIT离子源在100 mm轴向长度、80%栅极有效透明度条件下,工质利用率为90%,放电损失为203 W/A;10 cm ECRIT离子源在40 mm轴向长度、80%栅极有效透明度条件下,工质利用率为86%,放电损失为300 W/A。结果表明:采用Geobel模型算法计算结果与国外文献数据的相对误差小于5%,利用该模型对电子回旋共振离子推力器离子源性能分析的方法有效、合理。展开更多
In this work,a force measurement system is proposed to measure the thrust of plasma microthruster with thrust magnitude ranging from sub-micro-Newtons to hundreds micro-Newtons.The thrust measurement system uses an el...In this work,a force measurement system is proposed to measure the thrust of plasma microthruster with thrust magnitude ranging from sub-micro-Newtons to hundreds micro-Newtons.The thrust measurement system uses an elastic torsional pendulum structure with a capacitance sensor to measure the displacement,which can reflect the position change caused by the applied force perpendicular to the pendulum axis.In the open-loop mode,the steady-state thrust or the impulse of the plasma micro-thruster can be obtained from the swing of the pendulum,and in the closed-loop mode the steady-state thrust can be obtained from the feedback force that keeps the pendulum at a specific position.The thrust respond of the system was calibrated using an electrostatic weak force generation device.Experimental results show that the system can measure a thrust range from 0 to 200μN in both open-loop mode and closed-loop mode with a thrust resolution of 0.1μN,and the system can response to a pulse bit at the magnitude of 0.1 m N s generated by a micro cathode arc thruster.The background noise of the closed-loop mode is lower than that of the open-loop mode,both less than 0.1 m N/Hz in the range of 10 mHz to 5 Hz.展开更多
Based on the particle-in-cell (PIC) method, a two-dimensional numerical scheme was developed to investigate the ion beam extraction phenomena through the ion thruster optics. According to the calculated results, the...Based on the particle-in-cell (PIC) method, a two-dimensional numerical scheme was developed to investigate the ion beam extraction phenomena through the ion thruster optics. According to the calculated results, the plasma sheath upstream of the screen grid, the electric field in the calculation domain, and the ion and electron spatial distributions are obtained for different accelerator grid voltages. The results indicate that the accelerator grid voltage affects the plasma sheath upstream of the screen grid significantly. It is found that a moderate accelerator grid voltage results in an ion optical performance better than either a higher or lower voltage, from a point of ion extraction from the discharge chamber and erosion mitigation of the accelerator grid due to the direct ion impingement.展开更多
基金supported by the National Natural Science Foundation of China(No.11802022)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed plasma thruster is a structurally simple form of electric propulsion.This simplicity also makes it ideally suited for miniaturization.Its history can be traced back to applications in satellites that are much larger than micro/nano-satellites.The vast majority of modern pulsed plasma thrusters use solid polytetrafluoroethylene(PTFE)as a propellant.Unfortunately,at lower discharge energy levels such as those necessitated by the power limitations of micro/nano-satellites,PTFE has a tendency to exhibit carbon deposition,which can ultimately lead to thruster failure.In this new era of small satellites,it is important to consider alternative propellants in the miniaturization of pulsed plasma thrusters.This brief review discusses the needs and limitations of small satellites and alternative propellants that may be able to meet these needs.Such propellants may be able to offer advantages such as a longer thruster lifetime,a higher specific impulse,or a higher thrust-topower ratio.This would enable the development of different types of pulsed plasma thrusters that can be tailored towards specific mission requirements.
基金supported by National Natural Science Foundation of China (No. 11672039)。
文摘The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical processes of PPTs are described.Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures,discharge circuits,propellant materials,energy discharge method,propellant feed method,ignition method and number of thruster heads influence the PPT performance are presented and analyzed.The ignitor design method,ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs.The modeling methods of the discharge circuit,as well as ablation,ionization and acceleration in PPTs are presented.Finally,the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.
基金supported by National Natural Science Foundation of China (No. 11702123)Technology Based Research Projects of SASTIND (No. JSZL2017203B008)Fund for Distinguished Young Talents of CAST (No. 9140C550206130C55003)
文摘A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.
文摘Magnetoplasma thruster is one of the attractive plasma engines for space propulsion in future manned deep space exploration. Usually two helical antennas are equipped to produce and heat plasmas with separate radio frequency sources. It is presented in this paper that a helical antenna, which is used to launch one wave mode in one direction so far, exhibits bi-directional nature, where the waves with different mode numbers are launched and couple with electrons and ions selectively in opposite directions. A two-dimensional numerical calculation is performed to predict wave propagation and power absorption in a non-uniform hydrogen plasma immersed in a non-uniform external static magnetic field, based on the hot plasma theory. It is confirmed that appropriate choice of the excitation condition of the antenna can select axial propagation direction of specific wave modes and consequently select a species that absorbs power from generated waves. A small-scale experiment is performed to confirm the prediction of the calculation. By measuring a change in electron and ion temperatures due to the wave launch from the helical antenna, it is found that both the production and heating at different axial positions are accomplished simultaneously by one antenna showing that another type of the radio frequency driven magnetoplasma thruster would be achieved.
基金supported by the Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0339)。
文摘As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth.
文摘Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work was to develop and characterize a PPT that does not need a spark plug to initiate the plasma discharge. If the spark plug is eliminated, the size of the thrusters can be reduced and arrays of such thrusters can be manufactured using micro electro mechanical systems (MEMS) techniques, which can provide tremendous control authority over the satellite positioning. A parallel rail thruster was built and its performances were characterized inside a vacuum chamber to elucidate the effect of vacuum level on the performance. The electrical performance of the thruster was quantified by measuring the voltage output from a Rogowski coil, and the thrust produced by the developed thruster was estimated by measuring the force exerted by the plume on a light weight pendulum, whose deflection was measured using a laser displacement sensor. It was observed that the thruster can operate without a spark plug. In general, the performance parameters such as thrust, mass ablation, impulse bit, and specific impulse per discharge, would increase with the increase in pressure up to an optimum level due to the increase in discharge energy as well as the decrease in the total impedance of the plasma discharge. The thrust efficiency is found to be affected by the discharge energy.
基金supported by National Natural Science Foundation of China (No. 50676026)
文摘Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.
基金financial support of National Natural Science Foundation of China (Grant No.11475137)
文摘To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3×10^17 m^-3, respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8×10^17 m^-3, respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.
文摘The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.
文摘利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器性能的计算结果为:20 cm ECRIT离子源在100 mm轴向长度、80%栅极有效透明度条件下,工质利用率为90%,放电损失为203 W/A;10 cm ECRIT离子源在40 mm轴向长度、80%栅极有效透明度条件下,工质利用率为86%,放电损失为300 W/A。结果表明:采用Geobel模型算法计算结果与国外文献数据的相对误差小于5%,利用该模型对电子回旋共振离子推力器离子源性能分析的方法有效、合理。
基金supported by the Shanghai Engineering Research Center of Space Engine(No.17DZ2280800)。
文摘In this work,a force measurement system is proposed to measure the thrust of plasma microthruster with thrust magnitude ranging from sub-micro-Newtons to hundreds micro-Newtons.The thrust measurement system uses an elastic torsional pendulum structure with a capacitance sensor to measure the displacement,which can reflect the position change caused by the applied force perpendicular to the pendulum axis.In the open-loop mode,the steady-state thrust or the impulse of the plasma micro-thruster can be obtained from the swing of the pendulum,and in the closed-loop mode the steady-state thrust can be obtained from the feedback force that keeps the pendulum at a specific position.The thrust respond of the system was calibrated using an electrostatic weak force generation device.Experimental results show that the system can measure a thrust range from 0 to 200μN in both open-loop mode and closed-loop mode with a thrust resolution of 0.1μN,and the system can response to a pulse bit at the magnitude of 0.1 m N s generated by a micro cathode arc thruster.The background noise of the closed-loop mode is lower than that of the open-loop mode,both less than 0.1 m N/Hz in the range of 10 mHz to 5 Hz.
基金supported by the China Postdoctoral Science Foundation (CPSF) (No. 20090450275)National Natural Science Foundation of China (No. 10805004)
文摘Based on the particle-in-cell (PIC) method, a two-dimensional numerical scheme was developed to investigate the ion beam extraction phenomena through the ion thruster optics. According to the calculated results, the plasma sheath upstream of the screen grid, the electric field in the calculation domain, and the ion and electron spatial distributions are obtained for different accelerator grid voltages. The results indicate that the accelerator grid voltage affects the plasma sheath upstream of the screen grid significantly. It is found that a moderate accelerator grid voltage results in an ion optical performance better than either a higher or lower voltage, from a point of ion extraction from the discharge chamber and erosion mitigation of the accelerator grid due to the direct ion impingement.