A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective f...A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasm-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments, Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low) magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.展开更多
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn...In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.展开更多
This paper reviews the energetic particle(EP) experiments during electron cyclotron resonance heating(ECRH) and neutral beam injection in the HL-2 A tokamak.A number of important results are summarized,which relat...This paper reviews the energetic particle(EP) experiments during electron cyclotron resonance heating(ECRH) and neutral beam injection in the HL-2 A tokamak.A number of important results are summarized,which relate to ITER physics,including the behavior of the multi-mode instability,the nonlinear interaction between wave-wave and wave-particles,the losses of EP induced by the instabilities,the effect of the EP instabilities on the thermal plasma confinement and the control of the EP instabilities by means of ECRH.Systematic experiments indicate that when the drive is great enough,the nonlinear effects and the multi-mode coexistence may play an important role,which affect the transport both of the EPs and the background plasma confinement,and these instabilities could be controlled.Some new phenomena about the EP induced instabilities discovered recently on the device,such as high frequency reversed shear Alfvén eigenmodes,Alfvénic ion temperature gradient modes,the geodesic acoustic mode induced by energetic electrons excited by interaction between tearing mode and beta induced Alfvén eigenmode and double e-fishbone in negative magnetic shear discharges etc,have also been presented in the paper.展开更多
Spontaneous transition of the plasma confinement mode was observed in thehelical-axis heliotron device 'Heliotron J' for three different plasma heating schemes, i.e.ECH-only, NBI-only and the combination of EC...Spontaneous transition of the plasma confinement mode was observed in thehelical-axis heliotron device 'Heliotron J' for three different plasma heating schemes, i.e.ECH-only, NBI-only and the combination of ECH and NBI. The transition seems to occur above a certaincritical density. In addition to the confinement transition, a spontaneous shift of the hittingposition of the divertor plasma flux on the wall was observed. This shift could be related with thechange of the edge field topology caused by non-inductive toroidal currents.展开更多
Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting ...Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC’s application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma arc cutting engineering ceramics with additional anode. To reduce the kerf width and to improve the kerf quality, the hydro-magnetically confined plasma arc is used to cut engineering ceramic plates. By experiments and analyses the mechanism and characteristics of hydro-magnetic confined plasma are discussed and the effects of secondary confinement on cutting quality, arc properties, and optimal process parameters are presented. When the nozzle diameter is 3 mm, the kerf width of the Al 2O 3 ceramic plate with 6 mm thickness is less than 4.6 mm, and the cutting speed reaches to 0.9~1.2 m/min. Both theoretical analysis and experimental results have proved the feasibility and validity of the newly advanced hydro-magnetic plasma arc cutting, and the following conclusion can be drawn: (1)Synthesizing the advantages of both the water-constriction and magnetic constriction, the hydro-magnetic constriction of plasma arc forms a three-dimensional constriction with improved shape and uniformity of arc column, narrower kerfs, minimal beveling of cuts and higher dross-free cutting speeds than those under either water-constriction or magnetic constriction alone.(2)Hydro-magnetic constriction is capable of improving arc stability, which is reflected in the higher arc voltage at which arc-extinction occurs, than that under any single constriction. (3)For a given diameter of nozzle, quality cut can be produced by using a lower arc current than usually required in conventional plasma arc cutting, but ensuring fine arc shape 展开更多
The high confinement mode (H-mode) operation is recently obtained in HL-2A divertor configuration, the corresponding edge localized mode (ELM) is recognized as being of type III. Time intervals in ELM time series ...The high confinement mode (H-mode) operation is recently obtained in HL-2A divertor configuration, the corresponding edge localized mode (ELM) is recognized as being of type III. Time intervals in ELM time series are analysed to obtain the information about the ELM process. Signatures of unstable periodic orbits (UPOs) are detected, which are indicators of chaos and may be used to control the big ELM events.展开更多
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to ...One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.展开更多
Research on controlled nuclear fusion has been largely concentrated on plasma confinement using toroidal magnetic fields. Toroidal systems are complex. A simpler magnetic confinement system may provide a valuable plat...Research on controlled nuclear fusion has been largely concentrated on plasma confinement using toroidal magnetic fields. Toroidal systems are complex. A simpler magnetic confinement system may provide a valuable platform for understanding fusion plasmas. The linear mirror machine has delivered good performance with the potential of giving a direct conversion of nuclear energy into electric power. The GAMMA-10 (G-10) linear mirror confinement system at Tsukuba University demonstrated the principle of the direct conversion of plasma energy into electric power on a small scale from the exhaust plasma in the exterior divertor chamber. The tokamak fusion system has to prove that the 10 to 15 MA of plasma current can be sustained continuously with acceptable efficiency. Plasma confinement is due to the magnetic field from the plasma current in tokamaks. There is room for creative new solutions in the magnetic confinement of fusion plasmas, and consideration is given for the alternative approach of using a linear machine with high magnetic mirror fields and the direct conversion of the high temperature escaping plasma to electric power.展开更多
A method that uses radio frequency (RF) spectroscopy to evaluate the alignment of an optical lattice is proposed and demonstrated. A one-dimensional (1D) optical lattice is applied along the long axis of a cigar-s...A method that uses radio frequency (RF) spectroscopy to evaluate the alignment of an optical lattice is proposed and demonstrated. A one-dimensional (1D) optical lattice is applied along the long axis of a cigar-shaped Bose-Einstein condensate (BEC) in a magnetic trap. The RF spectra of condensates with and without the optical lattice are analyzed, measured, and compared with the condition in which the lattice is misaligned with the BEC. The proposed method greatly optimizes the optical alignments of the lattices.展开更多
The implementation of a technique to measure total collision cross sections using laser-cooled rubidium atoms along with the introduction of room-temperature background gases, confined in both magnetooptic and magneti...The implementation of a technique to measure total collision cross sections using laser-cooled rubidium atoms along with the introduction of room-temperature background gases, confined in both magnetooptic and magnetic traps, is proposed. Atom loss from the trap and total collision cross section can be inferred from the knowledge of the density of background gases. The measured cross sections from the magneto-optic and magnetic traps are represented, compared, and found to be significantly different. The measurements using this technique have a very small error in the range of approximately 2%-7%.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10205015 and 10575104).Acknowledgement 0ne of the authors, Ding B J, would like to thank the members of HT-7 Team for their cooperation and kindly help.
文摘A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasm-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments, Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low) magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.
文摘In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.
基金supported by National Natural Science Foundation of China under Grant Nos.11005035,11475058the National Magnetic Confinement Fusion Science Program of China(ITERCN) under Grant Nos.2013GB104001 and 2013GB106004
文摘This paper reviews the energetic particle(EP) experiments during electron cyclotron resonance heating(ECRH) and neutral beam injection in the HL-2 A tokamak.A number of important results are summarized,which relate to ITER physics,including the behavior of the multi-mode instability,the nonlinear interaction between wave-wave and wave-particles,the losses of EP induced by the instabilities,the effect of the EP instabilities on the thermal plasma confinement and the control of the EP instabilities by means of ECRH.Systematic experiments indicate that when the drive is great enough,the nonlinear effects and the multi-mode coexistence may play an important role,which affect the transport both of the EPs and the background plasma confinement,and these instabilities could be controlled.Some new phenomena about the EP induced instabilities discovered recently on the device,such as high frequency reversed shear Alfvén eigenmodes,Alfvénic ion temperature gradient modes,the geodesic acoustic mode induced by energetic electrons excited by interaction between tearing mode and beta induced Alfvén eigenmode and double e-fishbone in negative magnetic shear discharges etc,have also been presented in the paper.
基金The project partially supported by the Grant-in-Aid for Science Research of MEXT in Japan and by the Collaboration Program of the Laboratory for Complex Energy ProcessesIAEKyoto University
文摘Spontaneous transition of the plasma confinement mode was observed in thehelical-axis heliotron device 'Heliotron J' for three different plasma heating schemes, i.e.ECH-only, NBI-only and the combination of ECH and NBI. The transition seems to occur above a certaincritical density. In addition to the confinement transition, a spontaneous shift of the hittingposition of the divertor plasma flux on the wall was observed. This shift could be related with thechange of the edge field topology caused by non-inductive toroidal currents.
文摘Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC’s application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma arc cutting engineering ceramics with additional anode. To reduce the kerf width and to improve the kerf quality, the hydro-magnetically confined plasma arc is used to cut engineering ceramic plates. By experiments and analyses the mechanism and characteristics of hydro-magnetic confined plasma are discussed and the effects of secondary confinement on cutting quality, arc properties, and optimal process parameters are presented. When the nozzle diameter is 3 mm, the kerf width of the Al 2O 3 ceramic plate with 6 mm thickness is less than 4.6 mm, and the cutting speed reaches to 0.9~1.2 m/min. Both theoretical analysis and experimental results have proved the feasibility and validity of the newly advanced hydro-magnetic plasma arc cutting, and the following conclusion can be drawn: (1)Synthesizing the advantages of both the water-constriction and magnetic constriction, the hydro-magnetic constriction of plasma arc forms a three-dimensional constriction with improved shape and uniformity of arc column, narrower kerfs, minimal beveling of cuts and higher dross-free cutting speeds than those under either water-constriction or magnetic constriction alone.(2)Hydro-magnetic constriction is capable of improving arc stability, which is reflected in the higher arc voltage at which arc-extinction occurs, than that under any single constriction. (3)For a given diameter of nozzle, quality cut can be produced by using a lower arc current than usually required in conventional plasma arc cutting, but ensuring fine arc shape
基金Project supported by the National Natural Science Foundation of China (Grant No. 10990213)
文摘The high confinement mode (H-mode) operation is recently obtained in HL-2A divertor configuration, the corresponding edge localized mode (ELM) is recognized as being of type III. Time intervals in ELM time series are analysed to obtain the information about the ELM process. Signatures of unstable periodic orbits (UPOs) are detected, which are indicators of chaos and may be used to control the big ELM events.
文摘One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.
文摘Research on controlled nuclear fusion has been largely concentrated on plasma confinement using toroidal magnetic fields. Toroidal systems are complex. A simpler magnetic confinement system may provide a valuable platform for understanding fusion plasmas. The linear mirror machine has delivered good performance with the potential of giving a direct conversion of nuclear energy into electric power. The GAMMA-10 (G-10) linear mirror confinement system at Tsukuba University demonstrated the principle of the direct conversion of plasma energy into electric power on a small scale from the exhaust plasma in the exterior divertor chamber. The tokamak fusion system has to prove that the 10 to 15 MA of plasma current can be sustained continuously with acceptable efficiency. Plasma confinement is due to the magnetic field from the plasma current in tokamaks. There is room for creative new solutions in the magnetic confinement of fusion plasmas, and consideration is given for the alternative approach of using a linear machine with high magnetic mirror fields and the direct conversion of the high temperature escaping plasma to electric power.
基金supported by the National Fundamental Research Program of China (No. 2011CB921501)the National Natural Science Foundation of China (Nos.61027016, 61078026, and 10934010)
文摘A method that uses radio frequency (RF) spectroscopy to evaluate the alignment of an optical lattice is proposed and demonstrated. A one-dimensional (1D) optical lattice is applied along the long axis of a cigar-shaped Bose-Einstein condensate (BEC) in a magnetic trap. The RF spectra of condensates with and without the optical lattice are analyzed, measured, and compared with the condition in which the lattice is misaligned with the BEC. The proposed method greatly optimizes the optical alignments of the lattices.
基金supported by the NationalNatural Science Foundation of China under Grant No.10974039
文摘The implementation of a technique to measure total collision cross sections using laser-cooled rubidium atoms along with the introduction of room-temperature background gases, confined in both magnetooptic and magnetic traps, is proposed. Atom loss from the trap and total collision cross section can be inferred from the knowledge of the density of background gases. The measured cross sections from the magneto-optic and magnetic traps are represented, compared, and found to be significantly different. The measurements using this technique have a very small error in the range of approximately 2%-7%.