With the continuous increase in human population,there is widespread usage of chemical fertilizers that are responsible for introducing abiotic stresses in agricultural crop lands.Abiotic stresses are major constraint...With the continuous increase in human population,there is widespread usage of chemical fertilizers that are responsible for introducing abiotic stresses in agricultural crop lands.Abiotic stresses are major constraints for crop yield and global food security and therefore require an immediate response.The implementation of plant growth-promoting rhizobacteria(PGPR)into the agricultural production system can be a profitable alternative because of its efficiency in plant growth regulation and abiotic stress management.These bacteria have the potential to promote plant growth and to aid in the management of plant diseases and abiotic stresses in the soil through production of bacterial phytohormones and associated metabolites as well as through significant root morphological changes.These changes result in improved plant-water relations and nutritional status in plants and stimulate plants’defensive mechanisms to overcome unfavorable environmental conditions.Here,we describe the significance of plant-microbe interactions,highlighting the role of PGPR,bacterial phytohormones,and bacterial metabolites in relieving abiotic environmental stress in soil.Further research is necessary to gather in-depth knowledge on PGPR-associated mechanisms and plant-microbe interactions in order to pave a way for field-scale application of beneficial rhizobacteria,with the aim of building a healthy and sustainable agricultural system.Therefore,this review aims to emphasize the role of PGPR in growth promotion and management of abiotic soil stress with the goal of developing an eco-friendly and cost-effective strategy for future agricultural sustainability.展开更多
Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)...Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout 展开更多
Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential...Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.展开更多
基金the Department of Science and Technology (DST) for providing financial assistance as a Senior Research Fellow.
文摘With the continuous increase in human population,there is widespread usage of chemical fertilizers that are responsible for introducing abiotic stresses in agricultural crop lands.Abiotic stresses are major constraints for crop yield and global food security and therefore require an immediate response.The implementation of plant growth-promoting rhizobacteria(PGPR)into the agricultural production system can be a profitable alternative because of its efficiency in plant growth regulation and abiotic stress management.These bacteria have the potential to promote plant growth and to aid in the management of plant diseases and abiotic stresses in the soil through production of bacterial phytohormones and associated metabolites as well as through significant root morphological changes.These changes result in improved plant-water relations and nutritional status in plants and stimulate plants’defensive mechanisms to overcome unfavorable environmental conditions.Here,we describe the significance of plant-microbe interactions,highlighting the role of PGPR,bacterial phytohormones,and bacterial metabolites in relieving abiotic environmental stress in soil.Further research is necessary to gather in-depth knowledge on PGPR-associated mechanisms and plant-microbe interactions in order to pave a way for field-scale application of beneficial rhizobacteria,with the aim of building a healthy and sustainable agricultural system.Therefore,this review aims to emphasize the role of PGPR in growth promotion and management of abiotic soil stress with the goal of developing an eco-friendly and cost-effective strategy for future agricultural sustainability.
基金supported by the Natural Science Foundation of Shanxi Province of China(20210302123105)the Shanxi Scholarship Council of China(2020-054)the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(CKWV20221006/KY).
文摘Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout
基金supported jointly by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(No.2019QZKK0301)the Chinese Academy of Sciences(CAS)Interdisciplinary Innovation Team(No.xbzg-zysys-202112)+1 种基金the National Natural Science Foundation of China(Nos.32171757,31872700)Bartosz Adamczyk acknowledges the Academy of Finland(No.330136)。
文摘Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.