Over 350 million years have passed since the documentation of the first interaction between plants and insects. Numerous plant defense qualities and associated counter-adaptive features have developed as a result of t...Over 350 million years have passed since the documentation of the first interaction between plants and insects. Numerous plant defense qualities and associated counter-adaptive features have developed as a result of these interactions between insects and plants. These characteristics might be either morphological or biological in nature. One of the most significant and useful biochemical characteristics in plants is latex. Latex has a sticky property due to presence of secondary metabolites in it, which aids in entangling or sealing the mouthparts of small insects. These metabolites also chemically interact with the insects interfering with crucial bodily processes. Plant latex has amazing properties that help protect plants from insects and inhibit them in general. It may be possible to control insect pests in a natural, secure, and long-lasting manner by correctly identifying plant latex with strong insecticidal properties and developing formulations of plant latex.展开更多
(E)-β-Caryophyllene is a sesquiterpene compound widely distributed in plants and functions in plant defence. However, little is known about the sequence and function of (E)-β-caryophyllene synthase in lima bean ...(E)-β-Caryophyllene is a sesquiterpene compound widely distributed in plants and functions in plant defence. However, little is known about the sequence and function of (E)-β-caryophyllene synthase in lima bean (Phaseolus lunatus). Here, we report a new full-length cDNA (PICAHS) encoding (E)-β-caryophyllene synthase, a possible key enzyme of plant defence. The cDNA of PICAHS contains an open reading frame of 1 761 bp, encoding a protein of 586 amino acids with a predicted mass of 67.95 kDa. The deduced amino acid sequence shows 52% identity with sesquiterpene synthase MtCAHS of Med- icago truncatula. Based on phylogenetic analysis, PICAHS is classified as the terpene synthases (TPS)-a subfamily. The recombinant enzyme, expressed in Escherichia coil, catalysed the formation of a major product (E)-β-caryophyllene (82%) and a minor product a-humulene (18%) from farnesyl dJphosphate. Real-time quantitative PCR (qRT-PCR) analysis found that the PICAHS transcript was significantly up-regulated in leaves after treatment with spider mites and alamethicin (ALA), suggesting its ecological function in plant defence.展开更多
文摘Over 350 million years have passed since the documentation of the first interaction between plants and insects. Numerous plant defense qualities and associated counter-adaptive features have developed as a result of these interactions between insects and plants. These characteristics might be either morphological or biological in nature. One of the most significant and useful biochemical characteristics in plants is latex. Latex has a sticky property due to presence of secondary metabolites in it, which aids in entangling or sealing the mouthparts of small insects. These metabolites also chemically interact with the insects interfering with crucial bodily processes. Plant latex has amazing properties that help protect plants from insects and inhibit them in general. It may be possible to control insect pests in a natural, secure, and long-lasting manner by correctly identifying plant latex with strong insecticidal properties and developing formulations of plant latex.
基金funded by the International Science and Technology Cooperation Program of China (2013DFG32230)the Major Project of Genetically Modified Organisms Breeding,China (2016ZX08010005)
文摘(E)-β-Caryophyllene is a sesquiterpene compound widely distributed in plants and functions in plant defence. However, little is known about the sequence and function of (E)-β-caryophyllene synthase in lima bean (Phaseolus lunatus). Here, we report a new full-length cDNA (PICAHS) encoding (E)-β-caryophyllene synthase, a possible key enzyme of plant defence. The cDNA of PICAHS contains an open reading frame of 1 761 bp, encoding a protein of 586 amino acids with a predicted mass of 67.95 kDa. The deduced amino acid sequence shows 52% identity with sesquiterpene synthase MtCAHS of Med- icago truncatula. Based on phylogenetic analysis, PICAHS is classified as the terpene synthases (TPS)-a subfamily. The recombinant enzyme, expressed in Escherichia coil, catalysed the formation of a major product (E)-β-caryophyllene (82%) and a minor product a-humulene (18%) from farnesyl dJphosphate. Real-time quantitative PCR (qRT-PCR) analysis found that the PICAHS transcript was significantly up-regulated in leaves after treatment with spider mites and alamethicin (ALA), suggesting its ecological function in plant defence.
基金National Natural Science Foundation of China (30971702, 31271632, and 31672462)Research Grants from the Science and Technology Department of Zhejiang Province,China (LGN19C130004)。