期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于PlanetScope光学小卫星与ICESat-2激光测高数据的极地冰盖冰面湖水深遥感反演
1
作者 朱雨欣 满梦甜 +2 位作者 王裕涵 陈定华 杨康 《自然资源遥感》 CSCD 北大核心 2024年第4期314-320,共7页
每年消融期,冰面湖广泛分布于极地冰盖表面,能够存储大量冰面融水,但部分冰面湖底部破裂后会输送融水进入冰盖底部,从而影响冰盖运动与稳定性。因此,准确测算冰面湖水深信息,进而估算冰面湖体积及其动态变化,对于理解极地冰盖水文过程... 每年消融期,冰面湖广泛分布于极地冰盖表面,能够存储大量冰面融水,但部分冰面湖底部破裂后会输送融水进入冰盖底部,从而影响冰盖运动与稳定性。因此,准确测算冰面湖水深信息,进而估算冰面湖体积及其动态变化,对于理解极地冰盖水文过程具有重要意义。然而,实地测量冰面湖深度难度大、成本高、覆盖范围小,通过中低空间分辨率光学遥感影像构建的冰面湖水深反演模型精度不足。该研究综合PlanetScope SuperDove光学小卫星8波段遥感影像(空间分辨率为3 m)与ICESat-2激光测高数据反演冰面湖水深。首先,通过自适应核密度估计分离并拟合湖面与湖底ICESat-2激光测高点云,进而获取冰面湖水深观测结果;其次,利用最佳波段比值分析PlanetScope影像不同波段(组合)与ICESat-2水深数据的相关关系,构建二次函数、指数函数、幂函数与对数函数4种冰面湖水深反演经验公式;最后,选择4个具有同时期PlanetScope和ICESat-2数据覆盖的冰面湖,测试冰面湖水深遥感反演的精度。结果表明PlanetScope绿光I波段是冰面湖水深反演最佳波段,单波段反射率与冰面湖水深相关性最强(R^(2)=0.94),水深反演精度最高(均方根误差为1.0 m,相对均方根误差为0.15)。研究揭示了综合主被动卫星数据分析极地冰盖水文过程的良好潜力。 展开更多
关键词 冰面湖 planetscope ICESat-2 水深反演
下载PDF
基于PlanetScope影像的典型绿洲土壤盐渍化数字制图 被引量:1
2
作者 李科 丁建丽 +4 位作者 韩礼敬 葛翔宇 顾永昇 周倩 吕阳霞 《干旱区地理》 CSCD 北大核心 2023年第8期1291-1302,共12页
干旱半干旱地区急需高分辨率的土壤盐度图用于显示盐度空间分布的细微变化,指导盐渍化区域和潜在盐渍化区域制定土地资源管理政策和水资源管理政策,防止土壤进一步退化,保障农业经济可持续发展和粮食安全生产。基于PlanetScope影像,提... 干旱半干旱地区急需高分辨率的土壤盐度图用于显示盐度空间分布的细微变化,指导盐渍化区域和潜在盐渍化区域制定土地资源管理政策和水资源管理政策,防止土壤进一步退化,保障农业经济可持续发展和粮食安全生产。基于PlanetScope影像,提取植被光谱指数和土壤盐度指数,共计21个变量,将其输入装袋回归(Bootstrap aggregating,Bagging)算法中,构建了土壤盐度预测模型Model-Ⅰ;使用最相关最小冗余(Max-relevance and min-redundancy,mRMR)方法筛选特征变量,将其输入Bagging中,构建了土壤盐度预测模型Model-Ⅱ,使用野外采样数据来辅助建模并进行验证。通过模型评价指标对Model-Ⅰ和Model-Ⅱ进行评估。结果表明:Model-Ⅱ的预测性能优于Model-Ⅰ(验证集决定系数为0.66,均方根误差为18.00 dS·m-1,四分位数的相对预测误差为3.21),mRMR有效降低了多维特征冗余问题。PlanetScope影像结合mRMR方法成功绘制了高分辨率土壤盐度图,提供了更详细的土壤盐度空间分布信息,研究结果对利用PlanetScope数据监测土壤盐渍化信息起推动作用。 展开更多
关键词 planetscope mRMR BAGGING 土壤盐渍化 数字制图技术
下载PDF
Quick and automatic detection of co-seismic landslides with multifeature deep learning model
3
作者 Wenchao HUANGFU Haijun QIU +5 位作者 Peng CUI Dongdong YANG Ya LIU Bingzhe TANG Zijing LIU Mohib ULLAH 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2311-2325,共15页
Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics simila... Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics similar to those of co-seismic landslides,making it difficult to gather information and assess their impact rapidly and accurately.Therefore,an automatic detection method based on a deep learning model,named ENVINet5,with multiple features(ENVINet5_MF)was proposed to solve this problem and improve the detection accuracy of co-seismic landslides.The ENVINet5_MF method is advantageous for co-seismic landslide detection because it features a landslide gain index(LGI)that effectively eliminates the spectral interference of bare land and roads.We conducted two experiments using multi-temporal PlanetScope images acquired in Hokkaido,Japan,and Mainling,China.The accuracy evaluation and rationality analysis show that ENVINet5_MF performed better than comparative methods and that the co-seismic landslide areas detected by ENVINet5_MF were the most consistent with ground reference data.The findings of this study suggest that ENVINet5_MF can provide an efficient and accurate method for coseismic landslide detection to ensure a rapid response to co-seismic landslide disasters. 展开更多
关键词 Co-seismic landslide Automatic detection Deep learning Landslide gain index planetscope images
原文传递
基于PlanetScope影像的格陵兰冰面融水监测
4
作者 朱雨欣 张闻松 杨康 《极地研究》 CAS CSCD 北大核心 2023年第4期508-516,共9页
格陵兰冰盖的消融及其对海平面上升的贡献成为国际上研究的热点。每年消融期,格陵兰冰盖表面消融,融水会导致冰面形成冰面湖、冰面河、注水冰裂隙等形态。格陵兰冰面融水规模庞大、结构复杂、变化迅速,区域气候模型难以准确模拟冰面融... 格陵兰冰盖的消融及其对海平面上升的贡献成为国际上研究的热点。每年消融期,格陵兰冰盖表面消融,融水会导致冰面形成冰面湖、冰面河、注水冰裂隙等形态。格陵兰冰面融水规模庞大、结构复杂、变化迅速,区域气候模型难以准确模拟冰面融水分布,中等分辨率卫星影像难以反映冰面融水的时空变化。以PlanetScope为代表的CubeSat小卫星空间分辨率高达3 m,理想情况下重访周期可达1 d,这为精细化动态监测格陵兰冰面融水提供了可能。本研究利用PlanetScope高空间分辨率小卫星遥感影像提取格陵兰冰盖西南部典型流域冰面融水遥感信息,构建了针对PlanetScope遥感影像的冰面融水深度反演公式,对比了MAR v3.11区域气候模型模拟的融水径流量与遥感反演的融水体积。结果表明:在2019年7—8月,流域内冰面融水开放水体比率先上升后下降,在7月12日达到峰值8.7%;流域内冰面融水深度介于0.2~1.5 m之间,冰面湖最深(0.9 m±0.2 m),冰面河干流次之(0.6 m±0.1 m),冰面河支流最浅(0.5 m±0.1 m);遥感观测的开放水体比率、冰面融水体积与区域气候模型MAR模拟的融水日径流量具有正相关关系,故融水径流对于冰面湖与冰面河具有直接供给作用;流域冰面融水存储比例(遥感观测的冰面融水体积与模型模拟的融水累积径流量之比)先升高后降低,冰面融水储存比例小于1%,储存能力十分有限,冰面流域能够高效输送融水进入冰盖内部。 展开更多
关键词 冰面融水 planetscope 遥感观测 区域气候模型 格陵兰冰盖
下载PDF
Fusion of Landsat 8 OLI and PlanetScope Images for Urban Forest Management in Baton Rouge, Louisiana
5
作者 Yaw Adu Twumasi Abena Boatemaa Asare-Ansah +16 位作者 Edmund Chukwudi Merem Priscilla Mawuena Loh John Bosco Namwamba Zhu Hua Ning Harriet Boatemaa Yeboah Matilda Anokye Rechael Naa Dedei Armah Caroline Yeboaa Apraku Julia Atayi Diana Botchway Frimpong Ronald Okwemba Judith Oppong Lucinda A. Kangwana Janeth Mjema Leah Wangari Njeri Joyce McClendon-Peralta Valentine Jeruto 《Journal of Geographic Information System》 2022年第5期444-461,共18页
In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral ima... In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management. 展开更多
关键词 Remote Sensing Image Fusion Multispectral Images Urban Forest Landsat 8 Operational Land Imager (OLI) planetscope Baton Rouge
下载PDF
Planetscope Nanosatellites Image Classification Using Machine Learning 被引量:1
6
作者 Mohd Anul Haq 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1031-1046,共16页
To adopt sustainable crop practices in changing climate, understandingthe climatic parameters and water requirements with vegetation is crucial on aspatiotemporal scale. The Planetscope (PS) constellation of more than... To adopt sustainable crop practices in changing climate, understandingthe climatic parameters and water requirements with vegetation is crucial on aspatiotemporal scale. The Planetscope (PS) constellation of more than 130 nanosatellites from Planet Labs revolutionize the high-resolution vegetation assessment. PS-derived Normalized Difference Vegetation Index (NDVI) maps areone of the highest resolution data that can transform agricultural practices andmanagement on a large scale. High-resolution PS nanosatellite data was utilizedin the current study to monitor agriculture’s spatiotemporal assessment for theAl-Qassim region, Kingdom of Saudi Arabia (KSA). The time series of NDVIwas utilized to assess the vegetation pattern change in the study area. The currentstudy area has sparse vegetation, and exposed soil exhibits brightness due to lowsoil moisture, constraining NDVI. Therefore, a machine learning (ML) basedRandom Forest (RF) classification model was used to compare the vegetationextent and computational cost of NDVI. The RF model has been compared withNDVI in the current investigation. It is one of the most precise classificationmethods because it can model the complexity of input variables, handle outliers,treat noise effectively, and avoid overfitting. Multinomial Logistic Regression(MLR) was implemented to compare the performance of both NDVI and RFbased classification. RF model provided good accuracy (98%) for all vegetationclasses based on user accuracy, producer accuracy, and kappa coefficient. 展开更多
关键词 planetscope nanosatellites CLASSIFICATION logistic regression computer vision
下载PDF
Combining PlanetScope and Sentinel-2 images with environmental data for improved wheat yield estimation
7
作者 Nizom Farmonov Khilola Amankulova +4 位作者 József Szatmári Jamol Urinov Zafar Narmanov Jakhongir Nosirov LászlóMucsi 《International Journal of Digital Earth》 SCIE EI 2023年第1期847-867,共21页
Satellite images are widely used for crop yield estimation,but their coarse spatial resolution means that they often fail to provide detailed information at thefield scale.Recently,a new generation of high-resolution ... Satellite images are widely used for crop yield estimation,but their coarse spatial resolution means that they often fail to provide detailed information at thefield scale.Recently,a new generation of high-resolution satellites and CubeSat platforms has been launched.In this study,satellite data sources including PlanetScope and Sentinel-2 were combined with topographic and climatic variables,and the improvement in wheat yield estimation was evaluated.Wheat yield data from a combine harvester were used to train and validate a yield estimation model based on random forest regression.Nine vegetation indices(NDVI,GNDVI,MSAVI2,MTVI2,MTCI,reNDVI,SAVI,EVI and WDVI)and spectral bands were tested.During the model training,the Sentinel-2 data realized a slightly higher estimation accuracy than the PlanetScope data.However,combining environmental data with the PlanetScope data realized the highest estimation accuracy.For the validated models,adding the topographic and climatic datasets to the satellite data sources improved the estimation accuracy,and the results were slightly better with the Sentinel-2 data than with the PlanetScope data.Observation data of the milk and dough stages provided the highest estimation accuracy of the wheat yield at 210–225 days after sowing. 展开更多
关键词 Remote sensing BBCH-scale MSAVI2 planetscope random forest
原文传递
基于决策树的城市黑臭水体遥感分级 被引量:16
8
作者 李玲玲 李云梅 +4 位作者 吕恒 徐杰 杨子谦 毕顺 许佳峰 《环境科学》 EI CAS CSCD 北大核心 2020年第11期5060-5072,共13页
水体黑臭程度遥感监测是了解城市水质现状和综合评价城市水环境治理效果的重要手段.以南京、常州、无锡和扬州为研究区,共采集171个样点,同步测量水质参数和光学参数,分析黑臭水体与一般水体的水色和光学特征,构建决策树模型进行重度黑... 水体黑臭程度遥感监测是了解城市水质现状和综合评价城市水环境治理效果的重要手段.以南京、常州、无锡和扬州为研究区,共采集171个样点,同步测量水质参数和光学参数,分析黑臭水体与一般水体的水色和光学特征,构建决策树模型进行重度黑臭水体、轻度黑臭水体和非黑臭水体(记为一般水体)识别.结果表明:(1)根据色度可将水体分为1~6类水体,其中,类型1~4为黑臭水体,分别为灰黑色、深灰色、灰色和浅灰色水体,类型5和类型6水体为一般水体,分别为绿色系和黄色系水体;(2)类型1水体的非色素颗粒物和有色可溶性有机物含量高,但色素颗粒物的吸收并不占主导,类型2和5水体的吸收以色素颗粒物吸收占主导,类型3、4和6水体的吸收以非色素颗粒物吸收占主导;(3)根据六类水体的反射光谱差异用黑臭水体差值指数(difference of black-odorous water index,DBWI)、三波段面积水体指数(green-red-nir area water index,G-R-NIR AWI)、绿光波段反射率和归一化黑臭水体指数(normalized difference black-odorous water index,NDBWI)构建的水体分类识别决策树,能够有效识别出重、轻度黑臭水体和一般水体;(4)将决策树模型应用于2019年4月9日扬州的PlanetScope影像上,并利用10个同步过境点进行验证,整体识别精度达到80.00%,K值达到0.67.通过水色分类后的城市水体分级模型方法,可推广应用于类似的水体,为黑臭水体监管提供技术方法. 展开更多
关键词 城市黑臭水体 遥感分级 决策树 光学特性 planetscope卫星影像
原文传递
基于PlanetScope影像的广西钦州市黑臭水体识别方法研究 被引量:12
9
作者 姚焕玫 卢燕南 龚祝清 《环境工程》 CAS CSCD 北大核心 2019年第10期35-43,共9页
城市黑臭水体实质上是由环境保护和城市建设两者发展不平衡产生的,也是我国当下生态环境保护工作的重点之一。针对城市黑臭水体监测评价这一热点难点展开研究,以钦州市主城区为研究区域,以高频次重访的高空间分辨PlanetScope遥感影像为... 城市黑臭水体实质上是由环境保护和城市建设两者发展不平衡产生的,也是我国当下生态环境保护工作的重点之一。针对城市黑臭水体监测评价这一热点难点展开研究,以钦州市主城区为研究区域,以高频次重访的高空间分辨PlanetScope遥感影像为数据源,结合两期的实地采样数据,分析黑臭水体表观光学特性,利用黑臭水体与一般水体光谱曲线差异特征,提出近红外(NIR)单波段阈值法、HI指数法、EHI指数法和NDBWI指数法以及基于色度法的饱和度识别算法。城市黑臭水体与一般水体在蓝、绿和红波段(455~670 nm)的相同点是反射率偏低,不同点在于一般水体在455~670 nm处的光谱曲线斜率高于黑臭水体,在红波段处反射率达到极大值,在红波段和近红外波段开始下降,而黑臭水体此波段范围内反射率开始大幅升高。识别结果表明,NIR单波段阈值法识别准确率较低,存在较大偏差;HI指数识别准确率为57.14%;EHI指数和饱和度法对黑臭水体的识别准确率均为78.57%;NDBWI指数的识别准确率最高,达90%以上。 展开更多
关键词 城市黑臭水体 planetscope影像 识别算法 遥感监测
原文传递
面向城市土地利用的高分辨率遥感特征分析 被引量:3
10
作者 赵元铭 孙永华 +2 位作者 李小娟 贾军元 田福金 《测绘科学》 CSCD 北大核心 2022年第3期110-115,121,共7页
针对分类特征选取问题,分析了PlanetScope影像的城市地物特征对于分类结果的影响,并以江西省南昌市作为实证研究。探究13类城市地物的光谱、纹理、形状特征,以及植被指数和空间关系,提取不同地物的优势特征进行规则的决策树分类,并将分... 针对分类特征选取问题,分析了PlanetScope影像的城市地物特征对于分类结果的影响,并以江西省南昌市作为实证研究。探究13类城市地物的光谱、纹理、形状特征,以及植被指数和空间关系,提取不同地物的优势特征进行规则的决策树分类,并将分类结果与支持向量机和随机森林两种分类方法进行比较。研究结果发现:河流、沟渠和道路等线状地物的形状特征显著;植被间(林地与田地)的纹理特征差异明显;建筑物分布密集、形状规则,不同材质的建筑屋顶光谱特征存在差异,亮度值与形状特征对于该类地物显著性较高。3种方法的分类总体精度和Kappa系数分别为95.9%和95.5%,精度优于RF(80.4%)和SVM(76.2%),发现基于规则的决策树方法更适合于城市的密集性地物分类,清楚地展示了城市地物适用的分类特征,为小卫星数据的城市土地利用分类提供了参考和借鉴价值。 展开更多
关键词 planetscope卫星 城市土地利用 分类特征分析 规则提取
原文传递
利用多特征深度学习模型的同震滑坡智能化提取
11
作者 皇甫文超 邱海军 +5 位作者 崔鹏 杨冬冬 刘雅 唐柄哲 刘子敬 Mohib ULLAH 《中国科学:地球科学》 CSCD 北大核心 2024年第7期2347-2362,共16页
同震滑坡的智能化提取是地震后应急救援和风险评估的重要手段.然而,具有相似光谱特征的道路和裸地等地面物体总是干扰同震滑坡的精准遥感提取,从而使得现有方法难以快速和准确地收集同震滑坡信息并评估其影响.为提高同震滑坡提取的准确... 同震滑坡的智能化提取是地震后应急救援和风险评估的重要手段.然而,具有相似光谱特征的道路和裸地等地面物体总是干扰同震滑坡的精准遥感提取,从而使得现有方法难以快速和准确地收集同震滑坡信息并评估其影响.为提高同震滑坡提取的准确度,本研究提出了一种基于多种滑坡识别特征数据集的深度学习模型(ENVINet5_MF)用以自动提取同震滑坡. ENVINet5_MF在构建的过程中结合了滑坡增益指数(LGI),该指数能够扩大同震滑坡与裸地和道路之间的特征差异,有利于消除来自裸地和道路对同震滑坡提取的干扰.利用多时相Planet Scope图像,以日本北海道同震滑坡和中国米林同震滑坡为研究对象,分别在这两个区域进行了同震滑坡智能化提取实验.提取结果和方法性能评估表明ENVINet5_MF取得了比对比方法更加优异的性能,即ENVINet5_MF检测到的同震滑坡与地面参考数据最吻合,并且ENVINet5_MF的精度高于对比方法以及耗时最短.本研究提出的ENVINet5_MF大大提高了同震滑坡提取的准确性,为同震滑坡提取提供了一种高效的方法,可满足同震滑坡灾害的快速响应. 展开更多
关键词 同震滑坡 智能化提取 深度学习 滑坡增益指数 planetscope影像
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部