We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of bot...We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.展开更多
In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff p...In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.展开更多
In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct...In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct physical concept of collision intensity, introduced by CHANG and LI, the electrical conductivities for like-particles collisions are obtained in different conditions. The modified Fokker-Planck coefficients for non-Maxwellian scattering are applied in the study. It is found that the parallel part of the collision operator plays an important role. The non-Maxwellian scattering will stimulate the transport processes in various degrees with mutative deviation parameters.展开更多
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.
文摘We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.
基金National High-Tech ICF(Inertial Confinement Fusion)Committee in ChinaNational Natural Science Foundation of China(Nos.10475076,10505021,40336052,and 10175065)
文摘In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.
基金supported by National High-Tech ICF Committee in ChinaNational Natural Science Foundation of China(Nos.10475076,10505021,40336052,and 10175065)
文摘In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct physical concept of collision intensity, introduced by CHANG and LI, the electrical conductivities for like-particles collisions are obtained in different conditions. The modified Fokker-Planck coefficients for non-Maxwellian scattering are applied in the study. It is found that the parallel part of the collision operator plays an important role. The non-Maxwellian scattering will stimulate the transport processes in various degrees with mutative deviation parameters.