Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different...Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different pitched blade impellers,including 15°,30°,45°and 60°,on the mixing quality of gas–liquid agitated vessel.The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach,and RNG k-εwas used to model the turbulence.The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel.Based on the standard deviation criterion,it was observed that the axial distribution of the gas phase in the 30°impeller is about 55%better than the others.In addition,the results showed that the 30°impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel.Investigation of the power consumption of the impellers showed that the 30°impeller has the highest power consumption among the other pitched blade impellers.Also,examine the effect of same power condition for pitched blade impellers showed that the 30°impeller has the best mixing quality in this condition.展开更多
This paper provides innovative and effective instruments for the simplified analysis of serviceability limit states for pitched, kinked, and tapered GLT beams. Specifically, formulas for the evaluation of maximal hori...This paper provides innovative and effective instruments for the simplified analysis of serviceability limit states for pitched, kinked, and tapered GLT beams. Specifically, formulas for the evaluation of maximal horizontal and vertical displacements are derived from a recently-proposed Timoshenko-like non-prismatic beam model. Thereafter, the paper compares the proposed serviceability analysis formulas with other ones available in literature and with highly-refined 2D FE simulations in order to demonstrate the effectiveness of the proposed instruments. The proposed formulas lead to estimations that lie mainly on the conservative side and the errors are smaller than 10% (exceptionally up to 15%) in almost all of the cases of interest for practitioners. Conversely, the accuracy of the proposed formulas decreases for thick and highly-tapered beams since the beam model behind the proposed formulas cannot tackle local effects (like stress concentrations occurring at bearing and beam apex) that significantly influence the beam behavior for such geometries. Finally, the proposed formulas are more accurate than the ones available in literature since the latter ones often provide non-conservative estimations and errors greater than 20% (up to 120%).展开更多
This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field valida...This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.展开更多
Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and ill...Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.展开更多
This paper investigates the influence of temperature and wind conditions on ventilation of the air cavity beneath the roofing in a full-scale pitched wooden roof construction.The potential for condensation in the air ...This paper investigates the influence of temperature and wind conditions on ventilation of the air cavity beneath the roofing in a full-scale pitched wooden roof construction.The potential for condensation in the air cavity is studied.The relevant roof construction is equipped with 81 thermocouples and four air velocity measurement devices.A weather station at the site records outdoor temperature and wind conditions.Five periods between 2016 and 2018 are investigated.The findings show distinct periods of below-ambient temperature and positive condensation potential in the ventilated air cavity of the roof.A relation between low wind speed and positive condensation potential is shown.Difference in size of periods with below-ambient temperature and periods with positive condensation potential implies that the materials in the roof regulate the humidity in the air cavity.Large negative peaks in the condensation potential indicate dry-out of the construction.展开更多
基金Semnan University for the financial support of this research(grant number 845)。
文摘Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different pitched blade impellers,including 15°,30°,45°and 60°,on the mixing quality of gas–liquid agitated vessel.The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach,and RNG k-εwas used to model the turbulence.The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel.Based on the standard deviation criterion,it was observed that the axial distribution of the gas phase in the 30°impeller is about 55%better than the others.In addition,the results showed that the 30°impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel.Investigation of the power consumption of the impellers showed that the 30°impeller has the highest power consumption among the other pitched blade impellers.Also,examine the effect of same power condition for pitched blade impellers showed that the 30°impeller has the best mixing quality in this condition.
文摘This paper provides innovative and effective instruments for the simplified analysis of serviceability limit states for pitched, kinked, and tapered GLT beams. Specifically, formulas for the evaluation of maximal horizontal and vertical displacements are derived from a recently-proposed Timoshenko-like non-prismatic beam model. Thereafter, the paper compares the proposed serviceability analysis formulas with other ones available in literature and with highly-refined 2D FE simulations in order to demonstrate the effectiveness of the proposed instruments. The proposed formulas lead to estimations that lie mainly on the conservative side and the errors are smaller than 10% (exceptionally up to 15%) in almost all of the cases of interest for practitioners. Conversely, the accuracy of the proposed formulas decreases for thick and highly-tapered beams since the beam model behind the proposed formulas cannot tackle local effects (like stress concentrations occurring at bearing and beam apex) that significantly influence the beam behavior for such geometries. Finally, the proposed formulas are more accurate than the ones available in literature since the latter ones often provide non-conservative estimations and errors greater than 20% (up to 120%).
基金financial support from the National Natural Science Foundation of China (22078058)。
文摘This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.
基金Acknowledgements The authors are grateful for the support of this research by the Committee of National Science Foundation of China (50908077) and Foundation of Heilongjiang Province Educational Committee (11551368).
文摘Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.
文摘This paper investigates the influence of temperature and wind conditions on ventilation of the air cavity beneath the roofing in a full-scale pitched wooden roof construction.The potential for condensation in the air cavity is studied.The relevant roof construction is equipped with 81 thermocouples and four air velocity measurement devices.A weather station at the site records outdoor temperature and wind conditions.Five periods between 2016 and 2018 are investigated.The findings show distinct periods of below-ambient temperature and positive condensation potential in the ventilated air cavity of the roof.A relation between low wind speed and positive condensation potential is shown.Difference in size of periods with below-ambient temperature and periods with positive condensation potential implies that the materials in the roof regulate the humidity in the air cavity.Large negative peaks in the condensation potential indicate dry-out of the construction.