Drag reduction phenomenon in pipelines has received lots of attention during the past decades due to its potential engineering applications, especially in fluid transporting industries. Various methods to enhance drag...Drag reduction phenomenon in pipelines has received lots of attention during the past decades due to its potential engineering applications, especially in fluid transporting industries. Various methods to enhance drag reduction have been developed throughout the years and divided into two categories;non-additives method and additives method. Both categories have different types of methods, with different formulations and applications which will generally be discussed in this review. Among all the methods discussed, drag reduction using polymer additive is as one of the most enticing and desirable methods. It has been the subject of research in this field and has been studied extensively for quite some time. It is due to its ability to reduce drag up to 80% when added in minute concentrations. Reducing drag in the pipe will require less pumping power thus offering economic relieves to the industries. So, this paper will be focusing more on the use of polymer additives as drag reducing agent, the general formulations of the additives, major issues involving the use of drag reducing polymers, and the potential applications of it. However, despite the extensive works of drag reduction polymer, there are still no models that accurately explain the mechanism of drag reduction. More studies needed to be done to have a better understanding of the phenomenon. Therefore, future research areas and potential approaches are proposed for future work.展开更多
To better understand the carbon dioxide (CO2) corrosion behavior of carbon steel and its influence on petroleum development (including drilling,production and transportation) in the Daqing Oilfield,CO2 corrosion behav...To better understand the carbon dioxide (CO2) corrosion behavior of carbon steel and its influence on petroleum development (including drilling,production and transportation) in the Daqing Oilfield,CO2 corrosion behaviors of N80,P110,X52 and 13Cr pipe lines in simulated solution at high temperature and high pressure condition are investigated by dynamic corrosion experiments,scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses.Results show that the corrosion rate of all pipe lines increases quickly when CO2 partial pressure increases from 0.5 to 1.5 MPa,but it slows down when CO2 partial pressure further increases from 1.5 to 4.5 MPa,during which localized corrosion is prevailing.When the experimental temperature ranges from 60 to 120°C,localized corrosion prevails.The corrosion rate of all pipe lines decreases sharply when the temperature changes from 60 to 100°C,and it becomes stable after the temperature is higher than 100°C.When the flow rate is in the range of 0–1.5 m/s,the corrosion rate of sample X52 remains unchanged,but localized corrosion gradually becomes very serious when the flow rate further increases.By analyzing the corrosion product scales of sample 13Cr,some remarkable phenomena are observed.At the temperature range of 60–100°C,the corrosion product scales are loose and thick,but become very compact when the temperature increases above 100°C.In the later case,localized corrosion is prevailing.The main components of the corrosion product scales are FeCO3 and Cr2O3.展开更多
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement ...This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.展开更多
基金supported by the Ministry of Higher Education, Malaysia [grant number FRG0416-TK-1/2015]UMSGreat funding from Universiti Malaysia Sabah [grant number GUG0052-TK2/2016]
文摘Drag reduction phenomenon in pipelines has received lots of attention during the past decades due to its potential engineering applications, especially in fluid transporting industries. Various methods to enhance drag reduction have been developed throughout the years and divided into two categories;non-additives method and additives method. Both categories have different types of methods, with different formulations and applications which will generally be discussed in this review. Among all the methods discussed, drag reduction using polymer additive is as one of the most enticing and desirable methods. It has been the subject of research in this field and has been studied extensively for quite some time. It is due to its ability to reduce drag up to 80% when added in minute concentrations. Reducing drag in the pipe will require less pumping power thus offering economic relieves to the industries. So, this paper will be focusing more on the use of polymer additives as drag reducing agent, the general formulations of the additives, major issues involving the use of drag reducing polymers, and the potential applications of it. However, despite the extensive works of drag reduction polymer, there are still no models that accurately explain the mechanism of drag reduction. More studies needed to be done to have a better understanding of the phenomenon. Therefore, future research areas and potential approaches are proposed for future work.
基金supported by the Daqing Oilfield Limited Company of PetroChina (Grant No. DQYT-0404003-2008-JS-963)
文摘To better understand the carbon dioxide (CO2) corrosion behavior of carbon steel and its influence on petroleum development (including drilling,production and transportation) in the Daqing Oilfield,CO2 corrosion behaviors of N80,P110,X52 and 13Cr pipe lines in simulated solution at high temperature and high pressure condition are investigated by dynamic corrosion experiments,scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses.Results show that the corrosion rate of all pipe lines increases quickly when CO2 partial pressure increases from 0.5 to 1.5 MPa,but it slows down when CO2 partial pressure further increases from 1.5 to 4.5 MPa,during which localized corrosion is prevailing.When the experimental temperature ranges from 60 to 120°C,localized corrosion prevails.The corrosion rate of all pipe lines decreases sharply when the temperature changes from 60 to 100°C,and it becomes stable after the temperature is higher than 100°C.When the flow rate is in the range of 0–1.5 m/s,the corrosion rate of sample X52 remains unchanged,but localized corrosion gradually becomes very serious when the flow rate further increases.By analyzing the corrosion product scales of sample 13Cr,some remarkable phenomena are observed.At the temperature range of 60–100°C,the corrosion product scales are loose and thick,but become very compact when the temperature increases above 100°C.In the later case,localized corrosion is prevailing.The main components of the corrosion product scales are FeCO3 and Cr2O3.
文摘This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.