针对去蜂窝(cell free,CF)大规模多输入多输出(multiple-input multiple-output,MIMO)系统中存在严重的导频污染问题,提出了一种基于位置分配的贪婪导频分配功率控制算法(greedy pilot assignment based on location with pilot power c...针对去蜂窝(cell free,CF)大规模多输入多输出(multiple-input multiple-output,MIMO)系统中存在严重的导频污染问题,提出了一种基于位置分配的贪婪导频分配功率控制算法(greedy pilot assignment based on location with pilot power control,GPABL with PPC).首先,遵循相邻用户不分配相同导频序列的原则进行贪婪导频分配(greedy pilot assignment,GPA);然后,在导频分配的基础上叠加了导频功率控制,选择合理的导频功率控制系数减小信道估计的均方误差.仿真结果表明,将两种方式结合起来进行导频优化,系统的吞吐能力有所提升.展开更多
Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multi...Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.展开更多
文摘针对去蜂窝(cell free,CF)大规模多输入多输出(multiple-input multiple-output,MIMO)系统中存在严重的导频污染问题,提出了一种基于位置分配的贪婪导频分配功率控制算法(greedy pilot assignment based on location with pilot power control,GPABL with PPC).首先,遵循相邻用户不分配相同导频序列的原则进行贪婪导频分配(greedy pilot assignment,GPA);然后,在导频分配的基础上叠加了导频功率控制,选择合理的导频功率控制系数减小信道估计的均方误差.仿真结果表明,将两种方式结合起来进行导频优化,系统的吞吐能力有所提升.
基金support under the Multi-Disciplinary Research(MDR)Grant(H470)the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2019/TK04/UTHM/02/8).
文摘Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.