Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full ex...Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full extraction, and the first to be calibrated using an extensive database of longwall mining case histories.ALPS was followed by the analysis of retreat mining stability(ARMPS) and the analysis of multiple seam stability(AMSS). These methods incorporated other innovations, including the coal mine roof rating(CMRR), the Mark-Bieniawski pillar strength formula, and the pressure arch loading model. They also built upon ever larger case history databases and employed more sophisticated statistical methods.Today, these empirical methods are used in nearly every underground coal mine in the US. However,the piecemeal manner in which these methods have evolved resulted in some weaknesses. For example,in certain situations, it may not be obvious which program is the best to use. Other times the results from the different programs are not entirely consistent with each other. The programs have also not been updated for several years, and some changes were necessary to keep pace with new developments in mining practice. The analysis of coal pillar stability(ACPS) now integrates all three of the older software packages into a single pillar design framework. ACPS also incorporates the latest research findings in the field of pillar design, including an expanded multiple seam case history data base and a new method to evaluate room and pillar panels containing multiple rows of pillars left in place during pillar recovery.ACPS also includes updated guidance and warnings for users and features upgraded help files and graphics.展开更多
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov...Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.展开更多
通过对三向应力状态下的煤柱极限强度影响因素分析得出:我国目前普遍应用的A H 威尔逊计算理论存在因简化带来的问题.给出了不受地质采矿条件约束的计算公式,从而弥补了A H 威尔逊煤柱设计理论应用的局限性.实验得出:宽厚条带煤柱屈服...通过对三向应力状态下的煤柱极限强度影响因素分析得出:我国目前普遍应用的A H 威尔逊计算理论存在因简化带来的问题.给出了不受地质采矿条件约束的计算公式,从而弥补了A H 威尔逊煤柱设计理论应用的局限性.实验得出:宽厚条带煤柱屈服区宽度达到煤柱宽度的22 5%~27 5%,最大侧向应力系数λ=0 4~0 8.展开更多
The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of ...The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.展开更多
文摘Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full extraction, and the first to be calibrated using an extensive database of longwall mining case histories.ALPS was followed by the analysis of retreat mining stability(ARMPS) and the analysis of multiple seam stability(AMSS). These methods incorporated other innovations, including the coal mine roof rating(CMRR), the Mark-Bieniawski pillar strength formula, and the pressure arch loading model. They also built upon ever larger case history databases and employed more sophisticated statistical methods.Today, these empirical methods are used in nearly every underground coal mine in the US. However,the piecemeal manner in which these methods have evolved resulted in some weaknesses. For example,in certain situations, it may not be obvious which program is the best to use. Other times the results from the different programs are not entirely consistent with each other. The programs have also not been updated for several years, and some changes were necessary to keep pace with new developments in mining practice. The analysis of coal pillar stability(ACPS) now integrates all three of the older software packages into a single pillar design framework. ACPS also incorporates the latest research findings in the field of pillar design, including an expanded multiple seam case history data base and a new method to evaluate room and pillar panels containing multiple rows of pillars left in place during pillar recovery.ACPS also includes updated guidance and warnings for users and features upgraded help files and graphics.
文摘Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.
文摘通过对三向应力状态下的煤柱极限强度影响因素分析得出:我国目前普遍应用的A H 威尔逊计算理论存在因简化带来的问题.给出了不受地质采矿条件约束的计算公式,从而弥补了A H 威尔逊煤柱设计理论应用的局限性.实验得出:宽厚条带煤柱屈服区宽度达到煤柱宽度的22 5%~27 5%,最大侧向应力系数λ=0 4~0 8.
文摘The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.