Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors,which are inadequate in the most used molding method.Herein,laser direct writing(LDW)met...Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors,which are inadequate in the most used molding method.Herein,laser direct writing(LDW)method is proposed to fabricate flexible piezoresistive sensors with microstructures on PDMS/MWCNTs composites with an 8%MWCNTs mass fraction.By controlling laser energy,microstructures with different geometries can be obtained,which significantly impacts the performances of the sensors.Subsequently,curved microcones with excellent performance are fabricated under parameters of f=40 kHz and v=150 mm·s^(-1).The sensor exhibits continuous multi-linear sensitivity,ultrahigh original sensitivity of 21.80%kPa^(-1),wide detection range of over 20 kPa,response/recovery time of~100 ms and good cycle stability for more than 1000 times.Besides,obvious resistance variation can be observed when tiny pressure(a peanut of 30 Pa)is applied.Finally,the flexible piezoresistive sensor can be applied for LED brightness controlling,pulse detection and voice recognition.展开更多
Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic ...Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic structure of 2D mate-rials,has been widely used in the modulation of physical properties,which broadens their applications in flexible nanoelectronic and optoelectronic devices.In this review,we fist summari ze the methods of inducing strain to 2D materials and discuss the advantages and problems of various methods.We then introduce the strain induced effects on optical,electrical,and magnetic proper-ties,together with the phase transition of 2D materials.Finally,we ilustrate the potential applications of strained 2D materials and further look forward to their opportunities and challenges in practical applications in the future.展开更多
The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement r...The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement range to provide human-like tactile sensation.Herein,we developed a flexible piezoresistive pressure sensor that is highly sensitive in a broad pressure range by using lotus leaf micropatterned polydimethylsiloxane and multilayer superposition.By superposing four layers of micropatterned constructive substrates,the multilayer piezoresistive pressure sensor achieves a broad pressure range of 312 kPa,a high sensitivity of 2.525 kPa^(−1),a low limit of detection(LOD)of<12 Pa,and a fast response time of 45 ms.Compared with the traditional flexible pressure sensor,the pressure range of this sensor can be increased by at least an order of magnitude.The flexible piezoresistive pressure sensor also shows high robustness:after testing for at least 1000 cycles,it shows no sign of fatigue.More importantly,these sensors can be potentially applied in various human motion detection scenarios,including tiny pulse monitoring,throat vibration detection,and large under-feet pressure sensing.The proposed fabrication strategy may guide the design of other kinds of multifunctional sensors to improve the detection performance.展开更多
There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelli-gence,will emerge as de novo translational success in electronic skin.Here,we review the upda...There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelli-gence,will emerge as de novo translational success in electronic skin.Here,we review the updates with regard to piezoresistive sensors including basic fundamentals,design and fabrication,and device performance.We also discuss the prosperous advances in piezoresistive sensor application,which offer perspectives for future electronic skin.展开更多
Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/na...Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.展开更多
Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost ...Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost,large-scale production elusive. In this work, we report a flexible piezoresistive pressure sensor assembled with two 3D laserinduced graphene(LIG) foam electrodes on a polyimide thin film from a simple laser scribing process in the ambient environment. The design of the air gap between the two foam electrodes allows the sensor to showcase a low limit of detection of 0.274 Pa, which provides favorable sensing performance in motion detection and wrist pulse monitoring. The addition of spherical MoS2 nanoparticles between the two foam electrodes further enhances the sensitivity to 88 k Pa-1 and increases the sensing range to significantly outperform the previous literature reports. The demonstrated LIG pressure sensors also exhibit fast response/recovery rates and excellent durability/repeatability.展开更多
基金supported by the National Natural Science Foundation of China(No.51922092,No.51705439)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(JZX7Y20190243000801)+1 种基金the Natural Science Foundation of Fujian Province of China(No.2017J06015)Science and Technology Plan Project of Xiamen City(No.3502Z20173024).
文摘Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors,which are inadequate in the most used molding method.Herein,laser direct writing(LDW)method is proposed to fabricate flexible piezoresistive sensors with microstructures on PDMS/MWCNTs composites with an 8%MWCNTs mass fraction.By controlling laser energy,microstructures with different geometries can be obtained,which significantly impacts the performances of the sensors.Subsequently,curved microcones with excellent performance are fabricated under parameters of f=40 kHz and v=150 mm·s^(-1).The sensor exhibits continuous multi-linear sensitivity,ultrahigh original sensitivity of 21.80%kPa^(-1),wide detection range of over 20 kPa,response/recovery time of~100 ms and good cycle stability for more than 1000 times.Besides,obvious resistance variation can be observed when tiny pressure(a peanut of 30 Pa)is applied.Finally,the flexible piezoresistive sensor can be applied for LED brightness controlling,pulse detection and voice recognition.
基金the National Natural Science Foundation of China,Grant/AwardNumbers:51520105002,51972007。
文摘Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic structure of 2D mate-rials,has been widely used in the modulation of physical properties,which broadens their applications in flexible nanoelectronic and optoelectronic devices.In this review,we fist summari ze the methods of inducing strain to 2D materials and discuss the advantages and problems of various methods.We then introduce the strain induced effects on optical,electrical,and magnetic proper-ties,together with the phase transition of 2D materials.Finally,we ilustrate the potential applications of strained 2D materials and further look forward to their opportunities and challenges in practical applications in the future.
基金the Project of National Key Research and Development Program of China(No.2018YFC2001300)the National Natural Science Foundation of China(Nos.52175271,51822504,52021003,52105299,51905207,and 91948302)+2 种基金Science and Technology Development Plan Project of Jilin Province(No.20210508057RQ)Program for JinlinUniversity Science and Technology Innovative Research Team(No.2017TD-04)Scientific Research Project of EducationDepartment of Jilin Province(No.JJKH20211084KJ).
文摘The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement range to provide human-like tactile sensation.Herein,we developed a flexible piezoresistive pressure sensor that is highly sensitive in a broad pressure range by using lotus leaf micropatterned polydimethylsiloxane and multilayer superposition.By superposing four layers of micropatterned constructive substrates,the multilayer piezoresistive pressure sensor achieves a broad pressure range of 312 kPa,a high sensitivity of 2.525 kPa^(−1),a low limit of detection(LOD)of<12 Pa,and a fast response time of 45 ms.Compared with the traditional flexible pressure sensor,the pressure range of this sensor can be increased by at least an order of magnitude.The flexible piezoresistive pressure sensor also shows high robustness:after testing for at least 1000 cycles,it shows no sign of fatigue.More importantly,these sensors can be potentially applied in various human motion detection scenarios,including tiny pulse monitoring,throat vibration detection,and large under-feet pressure sensing.The proposed fabrication strategy may guide the design of other kinds of multifunctional sensors to improve the detection performance.
基金supported by the Hunan Provincial Technology Innovation Platform and Talent Program(2017XK2047)the Outstanding Youth Scientist Foundation of Hunan Province(2020JJ2001)+1 种基金Fundamental Research Funds for the Central Universities of P R China(531107050927)financial support from Hunan University for the Yuelu Young Scholars(JY-Q/008/2016).
文摘There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelli-gence,will emerge as de novo translational success in electronic skin.Here,we review the updates with regard to piezoresistive sensors including basic fundamentals,design and fabrication,and device performance.We also discuss the prosperous advances in piezoresistive sensor application,which offer perspectives for future electronic skin.
基金the National Natural Science Foundation of China(NSFC Nos.61674114,91743110,21861132001)National Key Research and Development Program of China(No.2017YFF0204604)+2 种基金Tianjin Applied Basic Research and Advanced Technology(No.17JCJQJC43600)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin Universitythe 111 Project(No.B07014).
文摘Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.
基金support from the Joint Doctoral Training Foundation of HEBUTsupports from the National Natural Science Foundation of China(Grant No.ECCS-1933072)+1 种基金the National Heart,Lung,and Blood Institute of the National Institutes of Health(Grant No.R61HL154215)the Penn State University(Center for Security Research and Education,Center for Biodevices,and College of Engineering Multidisciplinary Seed Grants)。
文摘Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost,large-scale production elusive. In this work, we report a flexible piezoresistive pressure sensor assembled with two 3D laserinduced graphene(LIG) foam electrodes on a polyimide thin film from a simple laser scribing process in the ambient environment. The design of the air gap between the two foam electrodes allows the sensor to showcase a low limit of detection of 0.274 Pa, which provides favorable sensing performance in motion detection and wrist pulse monitoring. The addition of spherical MoS2 nanoparticles between the two foam electrodes further enhances the sensitivity to 88 k Pa-1 and increases the sensing range to significantly outperform the previous literature reports. The demonstrated LIG pressure sensors also exhibit fast response/recovery rates and excellent durability/repeatability.