期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PCNN的工业制造领域质量文本实体关系抽取方法
被引量:
4
1
作者
张彤
宋明艳
+1 位作者
王俊
白洋
《信息技术与网络安全》
2021年第3期8-13,共6页
对汽车、机械等工业制造行业的质量报告进行关系抽取,对于该行业质量知识图谱、质量问答系统等研究有着极为重要的意义。针对在工业制造领域的质量知识图谱构建过程中尚无公开数据集可用的情况,收集了质量文本并进行相应的专业标注,构...
对汽车、机械等工业制造行业的质量报告进行关系抽取,对于该行业质量知识图谱、质量问答系统等研究有着极为重要的意义。针对在工业制造领域的质量知识图谱构建过程中尚无公开数据集可用的情况,收集了质量文本并进行相应的专业标注,构建了工业制造领域质量知识图谱关系抽取专业数据集。基于该数据集利用分段卷积神经网络(Piecewise Convolutional Neural Network,PCNN)实现关系抽取,然后根据中文特性,提出了改进的PCNN模型(C-PCNN),以提升在中文语料中关系抽取的性能。在本文构建的数据集中,改进后模型的准确率、召回率以及F1值优于对比的PCNN和RNN模型,验证了该方法的可行性和有效性。该研究对从事制造行业的人员有一定的实际意义。
展开更多
关键词
制造行业
质量文本
关系抽取
分段卷积神经网络
下载PDF
职称材料
题名
基于PCNN的工业制造领域质量文本实体关系抽取方法
被引量:
4
1
作者
张彤
宋明艳
王俊
白洋
机构
北京京航计算通讯研究所
哈尔滨工业大学经济与管理学院
出处
《信息技术与网络安全》
2021年第3期8-13,共6页
基金
国家自然科学基金(11901544)。
文摘
对汽车、机械等工业制造行业的质量报告进行关系抽取,对于该行业质量知识图谱、质量问答系统等研究有着极为重要的意义。针对在工业制造领域的质量知识图谱构建过程中尚无公开数据集可用的情况,收集了质量文本并进行相应的专业标注,构建了工业制造领域质量知识图谱关系抽取专业数据集。基于该数据集利用分段卷积神经网络(Piecewise Convolutional Neural Network,PCNN)实现关系抽取,然后根据中文特性,提出了改进的PCNN模型(C-PCNN),以提升在中文语料中关系抽取的性能。在本文构建的数据集中,改进后模型的准确率、召回率以及F1值优于对比的PCNN和RNN模型,验证了该方法的可行性和有效性。该研究对从事制造行业的人员有一定的实际意义。
关键词
制造行业
质量文本
关系抽取
分段卷积神经网络
Keywords
industrial
manufacturing
quality
text
relation
extraction
piecewise
convolutional
neural
network
(
pcnn
)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PCNN的工业制造领域质量文本实体关系抽取方法
张彤
宋明艳
王俊
白洋
《信息技术与网络安全》
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部