This paper aims to introduce the novel concept of the bipolar picture fuzzy set(BPFS)as a hybrid structure of bipolar fuzzy set(BFS)and picture fuzzy set(PFS).BPFS is a new kind of fuzzy sets to deal with bipolarity(b...This paper aims to introduce the novel concept of the bipolar picture fuzzy set(BPFS)as a hybrid structure of bipolar fuzzy set(BFS)and picture fuzzy set(PFS).BPFS is a new kind of fuzzy sets to deal with bipolarity(both positive and negative aspects)to each membership degree(belonging-ness),neutral membership(not decided),and non-membership degree(refusal).In this article,some basic properties of bipolar picture fuzzy sets(BPFSs)and their fundamental operations are introduced.The score function,accuracy function and certainty function are suggested to discuss the comparability of bipolar picture fuzzy numbers(BPFNs).Additionally,the concept of new distance measures of BPFSs is presented to discuss geometrical properties of BPFSs.In the context of BPFSs,certain aggregation operators(AOs)named as“bipolar picture fuzzy weighted geometric(BPFWG)operator,bipolar picture fuzzy ordered weighted geometric(BPFOWG)operator and bipolar picture fuzzy hybrid geometric(BPFHG)operator”are defined for information aggregation of BPFNs.Based on the proposed AOs,a new multicriteria decision-making(MCDM)approach is proposed to address uncertain real-life situations.Finally,a practical application of proposed methodology is also illustrated to discuss its feasibility and applicability.展开更多
文摘This paper aims to introduce the novel concept of the bipolar picture fuzzy set(BPFS)as a hybrid structure of bipolar fuzzy set(BFS)and picture fuzzy set(PFS).BPFS is a new kind of fuzzy sets to deal with bipolarity(both positive and negative aspects)to each membership degree(belonging-ness),neutral membership(not decided),and non-membership degree(refusal).In this article,some basic properties of bipolar picture fuzzy sets(BPFSs)and their fundamental operations are introduced.The score function,accuracy function and certainty function are suggested to discuss the comparability of bipolar picture fuzzy numbers(BPFNs).Additionally,the concept of new distance measures of BPFSs is presented to discuss geometrical properties of BPFSs.In the context of BPFSs,certain aggregation operators(AOs)named as“bipolar picture fuzzy weighted geometric(BPFWG)operator,bipolar picture fuzzy ordered weighted geometric(BPFOWG)operator and bipolar picture fuzzy hybrid geometric(BPFHG)operator”are defined for information aggregation of BPFNs.Based on the proposed AOs,a new multicriteria decision-making(MCDM)approach is proposed to address uncertain real-life situations.Finally,a practical application of proposed methodology is also illustrated to discuss its feasibility and applicability.