Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increas...Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The work of the paper focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the cont...The work of the paper focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the control point for physico-chemical investigation using sterilized glass bottles. Sampling was carried out upstream and downstream on the Santa Barbara River across the stations and the results are as follows surface water pH ranged 6.90 - 7.50, electrical conductivity 19739.41 μS/cm - 28920.64 μS/cm and Chloride 6019.63 - 9274.82 mg/l. The Total Dissolved Solids (TDS) varied from 10472.72 mg/l - 16538.19 mg/l dissolved oxygen (DO) 6.21 mg/l - 7.371 mg/l while the mean biochemical oxygen demand (BOD) 0.09 ± 0.52 mg/l - 2.4 ± 0.81 mg/l, temperature 28.04℃ - 31.79℃ while total alkalinity is 43.95 mg/L -73.87 mg/L. Calcium ion ranged 375.68 mg/l - 536.72 mg/l, Magnesium ion 88.35 - 243.24 mg/l and Potassium ion 41.27 - 121.17 mg/l. The results of the study showed that the pH, salinity, alkalinity, total suspended solids (TSS), Chlorides, Phosphates, and Nitrates are within permissible limits of the WHO, however the electrical conductivity, TDS, turbidity, DO, BOD, and hardness exceeded WHO permissible limits for drinking water. Total Petroleum Hydrocarbon (TPH) and Heavy metals had low concentrations in the Santa Barbara River across the study area suggesting that surface water is not polluted. However, the surfactants used initially to contain the oil pollution were effective based on this research.展开更多
Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological act...Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.展开更多
The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer ef...The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.展开更多
Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as f...Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as facile digestion and absorption,as well as antibacterial and antioxidant properties.The study utilized the Citespace and VOSviewer visual analysis software to examine the quantity of published papers,authors,publishing institutions,research hotspots and frontiers of 3442 effective literatures on the theme of"coconut oil"in the Web of Science(WoS)Core Collection database.The research on coconut oil can be condensed into four primary sections:(1)investigation and utilization of physiochemical characteristics of coconut oil,(2)analysis of nutritional composition and study of the effectiveness of coconut oil,(3)identification of adulteration in coconut oil,(4)evaluation of the impact of coconut oil as a dietary supplement on animal metabolism.Additionally,research focal points have evolved in three distinct phases.Prior to 2008,numerous studies were conducted to investigate the precise fatty acid makeup of coconut oil and its potential for lowering cholesterol levels.From 2009 to 2016,significant emphasis was placed on examining the impact of coconut oil on methane production in ruminants.Between 2018 to 2023,the main focus will be on investigating how nanoparticles can alter the properties of coconut oil.In the future,the anticipated research areas of interest are expected to focus on the rapid detection method of coconut oil,the efficacy of coconut oil and the advancement of coconut resources.The objective of this review is to provide researchers with relevant information about coconut oil,aiming to foster the continued growth of the coconut oil industry.展开更多
A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in lab...A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.展开更多
With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and acce...With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.展开更多
Theaflavins(TFs),as the major polyphenolic components of fermented tea,possess beneficial effects on human health.In this study,the effervescent tablets based on theaflavins were developed.The optimal formulation of T...Theaflavins(TFs),as the major polyphenolic components of fermented tea,possess beneficial effects on human health.In this study,the effervescent tablets based on theaflavins were developed.The optimal formulation of TF effervescent tablets was obtained by response surface methodology with the Box-Behnken design.Then,the physiochemical properties were evaluated,including hardness,friability,effervescent time and pH of the solution.At last,the antioxidant ability of TF effervescent tablets was studied through DPPH and ABTS radical scavenging assay.According to the results,the optimal formulation of the tablets contained TF powder 9.09%,disintegrating agent 43.80%(the weight ratio of citric acid and sodium bicarbonate was 1:1),aspartame 1.86%,PEG-6003%,and mannitol in balance.With the wet granulation method,the TF effervescent tablets displayed suitable hardness,fast disintegration time,good color,pleasant taste and high antioxidant activity.This study demonstrated that the TF effervescent tablets could be a valuable product for the supplement market and contribute to promoting practical application of TFs.展开更多
New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand,...New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand, whereas 2-nitroaniline (L2) represents the secondary ligand in a molar ratio of M:L1:L2 [1:1:1]. The synthesized Schiff base and chelates have been characterized by using several tools, such as, elemental analysis, molar conductivity, magnetic moment measurements, infrared and electronic spectra. The mass spectra of the ligands and Ni(II) chelate were used to justify the process of modification, as well as, the electron paramagnetic resonance spectrum which was carried out for Cu(II) chelate all in order to elucidate the chemical and geometrical structure of the chelates. On the basis of the obtained data, the geometry of the products was proposed for all the chelates.展开更多
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan...To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.展开更多
Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Prel...Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Preliminary phytochemical investigation of plant material was done.Other WHO recommended parameters for standardizations were also performed.Results:The detail microscopy revealed the presence of anomocytic stomata,unicellular trichome,xylem fibres,calcium oxalate crystals,vascular bundles,etc.Leaf constants such as stomatal number,stomatal index,vein-islet number and veinlet termination numbers were also measured.Physiochemical parameters such as ash values,loss on drying,extractive values,percentage of foreign matters,swelling index,etc.were also determined.Preliminary phytochemical screening showed the presence of steroids,terpenoids,glycosides,fatty acids,flavonoids,phenolic compounds and carbohydrates.Conclusions:The microscopic and physiochemical analysis of the D.indica leaf is useful in standardization for quality,purity and sample identification.展开更多
Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic di...Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.展开更多
Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of t...Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.展开更多
Water is one of the most vital elements of ecosystem and human being, but unfortunately nowadays, the pollution of surface and drinking water is an alarming problem. The present work deals with the assessment of physi...Water is one of the most vital elements of ecosystem and human being, but unfortunately nowadays, the pollution of surface and drinking water is an alarming problem. The present work deals with the assessment of physicochemical and bacteriological profile of several pond, jar and tube-well water samples to ensure its suitability for using and drinking. Total 30 samples were randomly selected and collected from Nakla Paurosova of Sherpur district by following the standard procedure. Bacteriological analysis was carried out by following the standard bacteriological methods. Most of the surface water sampling points were polluted by dumping of waste, cattle wash and were not suitable for drinking or other domestic purposes. Among three heavy metals, only Iron was detected in six tube-well water samples, one was also positive to arsenic, rest of the water bodies were negative to all of these metals. In case of most of the water bodies, different physicochemical properties were below standard limit. In pond water, the Total Viable Count (TVC) ranged from 2.7 × 107 cfu/100ml to 4.4 × 1015 cfu/100ml and Total Coliform Count (TCC) were 3.4 × 105 cfu/100ml to 4.8 × 1013 cfu/100ml, where the mean concentration of Heterotrophic Plate Count (HPC) was 2.4 × 105 cfu/100ml and 1.8 × 105 cfu/100ml in jar and tube-well water respectively. On the other hand, the Total Coliform Count of supply water was 33 cfu/100ml and tube-well water was 14 cfu/100ml. Fecal coliform was detected in all of the pond water samples, four jar and three tube-well water too. E. coli was present in all pond water samples, and also detected in 80% supply and 50% tube-well water also. Shigella spp. was found in two pond water and in one supply water, where tube-well water was free from it. Salmonella spp. was also detected in 30% of pond and 20% of supply water, whereas absent in tube-well water. 50% of pond, 40% of supply and 30% of tube-well water were contaminated with Vibrio spp. The total counts of these pathogenic bacteria exceeded the acceptab展开更多
This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surround...This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surrounding farms and flushed into the Obinna River. Water samples were collected from designated points along the river and analysed for physical, chemical and biological properties using standard methods of APHA. Impact of selected key parameters such as nitrate, phosphate, manganese, dissolved oxygen, biochemical oxygen demand and heavy metals (lead, iron and manganese), was studied. The results of the parameters were compared with the World Health Organisation (WHO) permissible standard for freshwater. Measured concentrations of phosphate (5.00, 7.21, 3.92 mg/L), manganese (1.53, 1.18, 1.47 mg/L) and lead (18.9, 21.7, 39.7 ppm) were found to be above the WHO standard while nitrate (0.04, 0.03, 0.03 mg/L) and iron (0.001, 0.001, 0.1 mg/L) were within the standard. The mean concentrations of heavy metals increased in the following order: Fe (0.034) 1 to downstream S3, with manganese and lead being above WHO standard. The results showed a level of significance for the chi-square distribution and correlation coefficients while the analysis of variance (ANOVA) results was conflicting. It could be inferred that the impact of the selected parameters contributed to the pollution of Obinna River.展开更多
As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The conti...As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The continued reliance on ground water has resulted in its decline in quantity and quality. In this study, the coastal aquifers of Lagos metropolis were selected for an assessment of its groundwater quality and impact of saline intrusion. Water samples collected along the coastal region were subjected to various physicochemical analyses. Results obtained were compared with permissible values for drinking water stated by Federal Environmental Protection Agency (FEPA) and World Health Organization (WHO). The results revealed that all the water samples were significantly hard (range 522.14 – 1233.34mg/L). The salinity was delineated by conductivity measurements. Three samples had specific conductance above the stated limits for fresh water. The samples however met the stipulated limits for drinking water for the other tested parameters.展开更多
基金financially supported by the Joint Funds of the National Natural Science Foundation of ChinaChina National Petroleum Corporation(U1362202)+4 种基金National Natural Science Foundation of China(21206195)the Fundamental Research Funds for the Central Universities(14CX02050A,14CX02123A)Shandong Provincial Natural Science Foundation(ZR2012BM014)the project sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholarthe support from Chinese Government under the Chinese scholarship scheme for international students
文摘Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘The work of the paper focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the control point for physico-chemical investigation using sterilized glass bottles. Sampling was carried out upstream and downstream on the Santa Barbara River across the stations and the results are as follows surface water pH ranged 6.90 - 7.50, electrical conductivity 19739.41 μS/cm - 28920.64 μS/cm and Chloride 6019.63 - 9274.82 mg/l. The Total Dissolved Solids (TDS) varied from 10472.72 mg/l - 16538.19 mg/l dissolved oxygen (DO) 6.21 mg/l - 7.371 mg/l while the mean biochemical oxygen demand (BOD) 0.09 ± 0.52 mg/l - 2.4 ± 0.81 mg/l, temperature 28.04℃ - 31.79℃ while total alkalinity is 43.95 mg/L -73.87 mg/L. Calcium ion ranged 375.68 mg/l - 536.72 mg/l, Magnesium ion 88.35 - 243.24 mg/l and Potassium ion 41.27 - 121.17 mg/l. The results of the study showed that the pH, salinity, alkalinity, total suspended solids (TSS), Chlorides, Phosphates, and Nitrates are within permissible limits of the WHO, however the electrical conductivity, TDS, turbidity, DO, BOD, and hardness exceeded WHO permissible limits for drinking water. Total Petroleum Hydrocarbon (TPH) and Heavy metals had low concentrations in the Santa Barbara River across the study area suggesting that surface water is not polluted. However, the surfactants used initially to contain the oil pollution were effective based on this research.
文摘Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.
文摘The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.
基金This study is supported by the Key Laboratory for Deep Processing of Major Grain and Oil,Ministry of Education(Wuhan Polytechnic University)(No.DZLY2022008)Hubei Key Laboratory for Processing and Transformation of Agricultural Products(Wuhan Polytechnic University)(No.NJZ2022008).
文摘Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as facile digestion and absorption,as well as antibacterial and antioxidant properties.The study utilized the Citespace and VOSviewer visual analysis software to examine the quantity of published papers,authors,publishing institutions,research hotspots and frontiers of 3442 effective literatures on the theme of"coconut oil"in the Web of Science(WoS)Core Collection database.The research on coconut oil can be condensed into four primary sections:(1)investigation and utilization of physiochemical characteristics of coconut oil,(2)analysis of nutritional composition and study of the effectiveness of coconut oil,(3)identification of adulteration in coconut oil,(4)evaluation of the impact of coconut oil as a dietary supplement on animal metabolism.Additionally,research focal points have evolved in three distinct phases.Prior to 2008,numerous studies were conducted to investigate the precise fatty acid makeup of coconut oil and its potential for lowering cholesterol levels.From 2009 to 2016,significant emphasis was placed on examining the impact of coconut oil on methane production in ruminants.Between 2018 to 2023,the main focus will be on investigating how nanoparticles can alter the properties of coconut oil.In the future,the anticipated research areas of interest are expected to focus on the rapid detection method of coconut oil,the efficacy of coconut oil and the advancement of coconut resources.The objective of this review is to provide researchers with relevant information about coconut oil,aiming to foster the continued growth of the coconut oil industry.
基金The study was supported by PPI/PPIC China Program (No. HB-19) and Wetland Laboratory Opening Foundation of Hubei Province (No. HNKFJ20021301).
文摘A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.
基金the Chinese Ministry of Agriculture(Grant No.2016ZX08001006)Science Technology Department of Zhejiang Province,China(Grant Nos.2016C02052-6,C02058-4,2017C02019 and 2018C02055)。
文摘With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.
基金Supported by Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains Fund(2021CX06)。
文摘Theaflavins(TFs),as the major polyphenolic components of fermented tea,possess beneficial effects on human health.In this study,the effervescent tablets based on theaflavins were developed.The optimal formulation of TF effervescent tablets was obtained by response surface methodology with the Box-Behnken design.Then,the physiochemical properties were evaluated,including hardness,friability,effervescent time and pH of the solution.At last,the antioxidant ability of TF effervescent tablets was studied through DPPH and ABTS radical scavenging assay.According to the results,the optimal formulation of the tablets contained TF powder 9.09%,disintegrating agent 43.80%(the weight ratio of citric acid and sodium bicarbonate was 1:1),aspartame 1.86%,PEG-6003%,and mannitol in balance.With the wet granulation method,the TF effervescent tablets displayed suitable hardness,fast disintegration time,good color,pleasant taste and high antioxidant activity.This study demonstrated that the TF effervescent tablets could be a valuable product for the supplement market and contribute to promoting practical application of TFs.
文摘New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand, whereas 2-nitroaniline (L2) represents the secondary ligand in a molar ratio of M:L1:L2 [1:1:1]. The synthesized Schiff base and chelates have been characterized by using several tools, such as, elemental analysis, molar conductivity, magnetic moment measurements, infrared and electronic spectra. The mass spectra of the ligands and Ni(II) chelate were used to justify the process of modification, as well as, the electron paramagnetic resonance spectrum which was carried out for Cu(II) chelate all in order to elucidate the chemical and geometrical structure of the chelates. On the basis of the obtained data, the geometry of the products was proposed for all the chelates.
基金supported by the Key Project of Developing Agriculture through Science and Technology of Shanghai Municipal Agricultural Commission,China(Grant No.2010-1-1)Shanghai Science and Technology Development Funds,China(Grant No.11QA1405900)the National High-Tech Research and Development Program of China(Grant No.2012AA101102)
文摘To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.
基金Supported by Career Award for Young Teachers.AICTE.New Delhi.(No.1-51/RID/CA/4/2009-10)
文摘Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Preliminary phytochemical investigation of plant material was done.Other WHO recommended parameters for standardizations were also performed.Results:The detail microscopy revealed the presence of anomocytic stomata,unicellular trichome,xylem fibres,calcium oxalate crystals,vascular bundles,etc.Leaf constants such as stomatal number,stomatal index,vein-islet number and veinlet termination numbers were also measured.Physiochemical parameters such as ash values,loss on drying,extractive values,percentage of foreign matters,swelling index,etc.were also determined.Preliminary phytochemical screening showed the presence of steroids,terpenoids,glycosides,fatty acids,flavonoids,phenolic compounds and carbohydrates.Conclusions:The microscopic and physiochemical analysis of the D.indica leaf is useful in standardization for quality,purity and sample identification.
基金supported by the National Natural Science Foundation of China(NSFC 51806243)and the China Scholarship Council Grant(#201908040007).
文摘Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.
文摘Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.
文摘Water is one of the most vital elements of ecosystem and human being, but unfortunately nowadays, the pollution of surface and drinking water is an alarming problem. The present work deals with the assessment of physicochemical and bacteriological profile of several pond, jar and tube-well water samples to ensure its suitability for using and drinking. Total 30 samples were randomly selected and collected from Nakla Paurosova of Sherpur district by following the standard procedure. Bacteriological analysis was carried out by following the standard bacteriological methods. Most of the surface water sampling points were polluted by dumping of waste, cattle wash and were not suitable for drinking or other domestic purposes. Among three heavy metals, only Iron was detected in six tube-well water samples, one was also positive to arsenic, rest of the water bodies were negative to all of these metals. In case of most of the water bodies, different physicochemical properties were below standard limit. In pond water, the Total Viable Count (TVC) ranged from 2.7 × 107 cfu/100ml to 4.4 × 1015 cfu/100ml and Total Coliform Count (TCC) were 3.4 × 105 cfu/100ml to 4.8 × 1013 cfu/100ml, where the mean concentration of Heterotrophic Plate Count (HPC) was 2.4 × 105 cfu/100ml and 1.8 × 105 cfu/100ml in jar and tube-well water respectively. On the other hand, the Total Coliform Count of supply water was 33 cfu/100ml and tube-well water was 14 cfu/100ml. Fecal coliform was detected in all of the pond water samples, four jar and three tube-well water too. E. coli was present in all pond water samples, and also detected in 80% supply and 50% tube-well water also. Shigella spp. was found in two pond water and in one supply water, where tube-well water was free from it. Salmonella spp. was also detected in 30% of pond and 20% of supply water, whereas absent in tube-well water. 50% of pond, 40% of supply and 30% of tube-well water were contaminated with Vibrio spp. The total counts of these pathogenic bacteria exceeded the acceptab
文摘This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surrounding farms and flushed into the Obinna River. Water samples were collected from designated points along the river and analysed for physical, chemical and biological properties using standard methods of APHA. Impact of selected key parameters such as nitrate, phosphate, manganese, dissolved oxygen, biochemical oxygen demand and heavy metals (lead, iron and manganese), was studied. The results of the parameters were compared with the World Health Organisation (WHO) permissible standard for freshwater. Measured concentrations of phosphate (5.00, 7.21, 3.92 mg/L), manganese (1.53, 1.18, 1.47 mg/L) and lead (18.9, 21.7, 39.7 ppm) were found to be above the WHO standard while nitrate (0.04, 0.03, 0.03 mg/L) and iron (0.001, 0.001, 0.1 mg/L) were within the standard. The mean concentrations of heavy metals increased in the following order: Fe (0.034) 1 to downstream S3, with manganese and lead being above WHO standard. The results showed a level of significance for the chi-square distribution and correlation coefficients while the analysis of variance (ANOVA) results was conflicting. It could be inferred that the impact of the selected parameters contributed to the pollution of Obinna River.
文摘As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The continued reliance on ground water has resulted in its decline in quantity and quality. In this study, the coastal aquifers of Lagos metropolis were selected for an assessment of its groundwater quality and impact of saline intrusion. Water samples collected along the coastal region were subjected to various physicochemical analyses. Results obtained were compared with permissible values for drinking water stated by Federal Environmental Protection Agency (FEPA) and World Health Organization (WHO). The results revealed that all the water samples were significantly hard (range 522.14 – 1233.34mg/L). The salinity was delineated by conductivity measurements. Three samples had specific conductance above the stated limits for fresh water. The samples however met the stipulated limits for drinking water for the other tested parameters.