期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prepartition: Load Balancing Approach for Virtual Machine Reservations in a Cloud Data Center 被引量:1
1
作者 田文洪 徐敏贤 +3 位作者 周光耀 吴逵 须成忠 Rajkumar Buyya 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第4期773-792,共20页
Load balancing is vital for the efficient and long-term operation of cloud data centers.With virtualization,post(reactive)migration of virtual machines(VMs)after allocation is the traditional way for load balancing an... Load balancing is vital for the efficient and long-term operation of cloud data centers.With virtualization,post(reactive)migration of virtual machines(VMs)after allocation is the traditional way for load balancing and consolidation.However,it is not easy for reactive migration to obtain predefined load balance objectives and it may interrupt services and bring instability.Therefore,we provide a new approach,called Prepartition,for load balancing.It partitions a VM request into a few sub-requests sequentially with start time,end time and capacity demands,and treats each sub-request as a regular VM request.In this way,it can proactively set a bound for each VM request on each physical machine and makes the scheduler get ready before VM migration to obtain the predefined load balancing goal,which supports the resource allocation in a fine-grained manner.Simulations with real-world trace and synthetic data show that our proposed approach with offline version(PrepartitionOff)scheduling has 10%–20%better performance than the existing load balancing baselines under several metrics,including average utilization,imbalance degree,makespan and Capacity_makespan.We also extend Prepartition to online load balancing.Evaluation results show that our proposed approach also outperforms state-of-the-art online algorithms. 展开更多
关键词 cloud computing physical machine(pm) virtual machine(VM) RESERVATION load balancing Prepartition
原文传递
基于Markov过程的IaaS系统可用性建模与分析方法
2
作者 杨哂哂 吴慧珍 +1 位作者 庄黎丽 吕宏武 《计算机应用》 CSCD 北大核心 2020年第10期3013-3018,共6页
针对现有基础设施即服务(IaaS)可用性模型难以计算存在多个可用物理机器(PM)概率的问题,提出一种基于Markov过程的IaaS可用性分析方法。首先,将计算资源划分为hot PM、warm PM和cold PM三类;然后,结合资源分配过程的相应阶段对可用性影... 针对现有基础设施即服务(IaaS)可用性模型难以计算存在多个可用物理机器(PM)概率的问题,提出一种基于Markov过程的IaaS可用性分析方法。首先,将计算资源划分为hot PM、warm PM和cold PM三类;然后,结合资源分配过程的相应阶段对可用性影响进行建模,分别生成对应的三种分配子模型,子模型之间通过不同种类计算资源的转换关系相互协作,构建系统整体模型;其次,基于Markov过程建立方程组以对可用性模型进行求解;最后,结合实例对分析模型进行验证,并对PM变迁速率等关键影响因素进行了分析。实验结果表明,增加PM尤其是cold PM的数量有助于提升IaaS的可用性。所提方法可以用于评估IaaS存在一个或多个可用PM的概率。 展开更多
关键词 云计算 可用性 MARKOV过程 稳态概率 物理机器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部