By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them....By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them.We find that real rescattering can occur many times,and even infinite times.The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum.We further disclose a multiple-plateau structure formed by the high-energy photoelectrons,which absorb many photons during the rescattering process.Moreover,we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.展开更多
In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photo...In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photoelectron images are detected. The channel switching and above-threshold ionization(ATI) effect are also confirmed. The kinetic energy spectrum(KES) and the photoelectron angular distributions(PADs) are obtained through the anti-Abel transformation from the original images, and then three ionization channels are confirmed successfully according to the Freeman resonance effect in a relatively low laser intensity region. In the excitation process, the intermediate resonance Rydberg states are C^1 A 1(6 + 2 photons process), B^1 E(6 + 2 photons process) and C^1 A 1(7 + 2 photons process), respectively. At the same time, we also find that the photoelectron angular distributions are independent of laser intensity. In addition, the electrons produced by different processes interfere with each other and they can produce a spider-like structure. We also find ac-Stark movement according to the Stark-shift-induced resonance effect when the laser intensity is relatively high.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774513,61078080,11174304,and 11104167)the National Basic Research Program of China (Grant Nos. 2010CB923203 and 2011CB808103)
文摘By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them.We find that real rescattering can occur many times,and even infinite times.The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum.We further disclose a multiple-plateau structure formed by the high-energy photoelectrons,which absorb many photons during the rescattering process.Moreover,we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574116,11534004,10704028,and 11474123)
文摘In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photoelectron images are detected. The channel switching and above-threshold ionization(ATI) effect are also confirmed. The kinetic energy spectrum(KES) and the photoelectron angular distributions(PADs) are obtained through the anti-Abel transformation from the original images, and then three ionization channels are confirmed successfully according to the Freeman resonance effect in a relatively low laser intensity region. In the excitation process, the intermediate resonance Rydberg states are C^1 A 1(6 + 2 photons process), B^1 E(6 + 2 photons process) and C^1 A 1(7 + 2 photons process), respectively. At the same time, we also find that the photoelectron angular distributions are independent of laser intensity. In addition, the electrons produced by different processes interfere with each other and they can produce a spider-like structure. We also find ac-Stark movement according to the Stark-shift-induced resonance effect when the laser intensity is relatively high.