In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) ...In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.展开更多
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate...The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.展开更多
Metal-organic frameworks(MOFs)with inherent porosity and suspended acidic groups are promising proton conducting materials in water or aqua-ammonia media.Herein we report a new lanthanide phosphonate,namely,Dy_(2)(amp...Metal-organic frameworks(MOFs)with inherent porosity and suspended acidic groups are promising proton conducting materials in water or aqua-ammonia media.Herein we report a new lanthanide phosphonate,namely,Dy_(2)(amp_(2)H_(2))_(2)(mal)(H_(2)O)_(2)·5H2O(MDAF-6).It possesses a 3D open-framework structure,and shows a high NH_(3)adsorption capacity of 142.4 cm^(3)/g at P/P0=0.98 at 298 K due to acid-base interaction.Interestingly,the proton conductivity of MDAF-6-NH3 is enhanced by five orders of magnitude compared to MDAF-6 after 8.5 h exposure in saturated NH_(3)-H_(2)O vapor,indicating the importance of coexistent conjugate acid-base pairs of H_(3)O+-H_(2)O and NH_(4)^(+)-NH_(3)in promoting proton conduction.Magnetic studies of MDAF-6 revealed slow magnetization relaxation under zero dc field,characteristic of singlemolecule magnet behavior.This work provides not only a new multifunctional MOF material,but also a new strategy to improve proton conduction in aqua-ammonia medium.展开更多
Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionaliz...Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionalized mesoporous silica SBA-15 (PA-SBA-15) as U(VI) sorbent was fabricated through post-grafting method. The obtained mesoporous silica was character- ized by SEM, XRD, NMR and nitrogen sorption/desorption experiments, which revealed the existence of ordered mesoporous structure with uniform pore diameter and large surface area. The adsorptivity of PA-SBA-15 for U(VI) from aqueous solution was investigated using batch sorption technique under different experimental conditions. The preliminary results show that the U(VI) sorption by PA-SBA-15 is very quick with equilibrium time of less than 1 h, and the U(VI) uptake is as large as 373 mg/g at pH 5.5 under 95℃. The sorption isotherm has been successfully modeled by the Langmuir isotherm, suggesting a monolayer homogeneous sorption of U(VI) in PA-SBA-15. The sorption is pH-dependent due to the pH-dependent charge of sorbent in the aqueous solution. The thermodynamics research shows that the sorption is a feasible and endothermic process. Based on these results, PA-SBA-15 could be a promising solid phase sorbent for highly-efficient removal of U(VI) ions from waste water and enrichment of U(VI) from a solution at a very low level.展开更多
基金supported by the State Key Program of Coal Joint Funds of National Natural Science Foundation of China (No.51134020)the Natural Science Foundation of Shandong Province(No. ZR2011EL036)the High School Science & Technology Fund Planning Project of Shandong Province (No. JIILD53)
文摘In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.
基金the National Natural Science Foundation of China(No.21731003).
文摘Metal-organic frameworks(MOFs)with inherent porosity and suspended acidic groups are promising proton conducting materials in water or aqua-ammonia media.Herein we report a new lanthanide phosphonate,namely,Dy_(2)(amp_(2)H_(2))_(2)(mal)(H_(2)O)_(2)·5H2O(MDAF-6).It possesses a 3D open-framework structure,and shows a high NH_(3)adsorption capacity of 142.4 cm^(3)/g at P/P0=0.98 at 298 K due to acid-base interaction.Interestingly,the proton conductivity of MDAF-6-NH3 is enhanced by five orders of magnitude compared to MDAF-6 after 8.5 h exposure in saturated NH_(3)-H_(2)O vapor,indicating the importance of coexistent conjugate acid-base pairs of H_(3)O+-H_(2)O and NH_(4)^(+)-NH_(3)in promoting proton conduction.Magnetic studies of MDAF-6 revealed slow magnetization relaxation under zero dc field,characteristic of singlemolecule magnet behavior.This work provides not only a new multifunctional MOF material,but also a new strategy to improve proton conduction in aqua-ammonia medium.
基金supported by the National Natural Science Foundation of China (91026007)the "Strategic Priority Research program" of the Chinese Academy of Sciences (XDA03010401,XDA03010403)
文摘Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionalized mesoporous silica SBA-15 (PA-SBA-15) as U(VI) sorbent was fabricated through post-grafting method. The obtained mesoporous silica was character- ized by SEM, XRD, NMR and nitrogen sorption/desorption experiments, which revealed the existence of ordered mesoporous structure with uniform pore diameter and large surface area. The adsorptivity of PA-SBA-15 for U(VI) from aqueous solution was investigated using batch sorption technique under different experimental conditions. The preliminary results show that the U(VI) sorption by PA-SBA-15 is very quick with equilibrium time of less than 1 h, and the U(VI) uptake is as large as 373 mg/g at pH 5.5 under 95℃. The sorption isotherm has been successfully modeled by the Langmuir isotherm, suggesting a monolayer homogeneous sorption of U(VI) in PA-SBA-15. The sorption is pH-dependent due to the pH-dependent charge of sorbent in the aqueous solution. The thermodynamics research shows that the sorption is a feasible and endothermic process. Based on these results, PA-SBA-15 could be a promising solid phase sorbent for highly-efficient removal of U(VI) ions from waste water and enrichment of U(VI) from a solution at a very low level.