Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The t...Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The treatments included low-input [unfertilized control without N, P, or K(C0N0)], farmyard manure(FYM)(C1N0), NP(C0NP), NPK(C0NPK), FYM + NP(C1NP), and high-input treatment, FYM + NPK(C1NPK). Grain yield was increased significantly by 74%over the control under the combined application of FYM + NPK. However, under low- and high-input treatments, yield as well as P uptake was maintained at constant levels for 35 years.During the same period, high yield levels and P uptake were maintained under the C0 NP, C0 NPK,and C1 NPK treatments. These are unique characteristics of a tropical flooded ecosystem, which is a self-sustaining system for rice production. The Fe–P fraction was highest compared to the Ca–P and Al–P fractions after 42 years of fertilizer application and was significantly higher under FYM + NPK treatment. The P adsorption capacity of soil was highest under the low-input treatment and lowest under long-term balanced fertilization(FYM + NPK). In contrast, P desorption capacity was highest under NPK and lowest in the control treatment. Long-term balanced fertilization in the form of FYM + NPK for 42 years lowered the bonding energy and adsorption capacity for P in soil but increased its desorption potential, increasing P availability to the plant and leading to higher P uptake and yield maintenance.展开更多
Sodium deoxycholate (NaDOC) could induce 1-bromo-4-(bromoacetyl) naphthalene (BBAN) to emit strong room temperature phosphorescence (RTP). Measurements of phosphore- scence spectra, peak intensity and polarization we...Sodium deoxycholate (NaDOC) could induce 1-bromo-4-(bromoacetyl) naphthalene (BBAN) to emit strong room temperature phosphorescence (RTP). Measurements of phosphore- scence spectra, peak intensity and polarization were used to investigate the solubilization of BBAN as a function of NaDOC concentration.展开更多
The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to...The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.展开更多
ALICE,A Large Ion Collider Experiment,is dedicated to study the QCD matter at extreme high temperature and density to understand the Quark Gluon Plasma (QGP) and phase transition.High-transversemomentum photons and ...ALICE,A Large Ion Collider Experiment,is dedicated to study the QCD matter at extreme high temperature and density to understand the Quark Gluon Plasma (QGP) and phase transition.High-transversemomentum photons and neutral mesons from the initial hard scattering of partons can be measured with ALICE calorimeters,PHOS (PHOton Spectrometer) and EMCAL (ElectroMagnetic CALorimeter).Combing the additional central tracking detectors,the γ-jet and π 0-jet measurements thus can be accessed.These measurements offer us a sensitive tomography probe of the hot-dense medium generated in the heavy ion collisions.In this paper,high p T and photon physics is discussed and the ALICE calorimeters capabilities of high-transverse-momentum neutral mesons and γ-jet measurements are presented.展开更多
Platelets have essential roles in both health and disease. Normal platelet function is required for hemostasis.Inhibition of platelet function in disease or by pharmacological treatment results in bleeding disorders.O...Platelets have essential roles in both health and disease. Normal platelet function is required for hemostasis.Inhibition of platelet function in disease or by pharmacological treatment results in bleeding disorders.On the other hand,hyperactive platelets lead to heart attack and stroke.Calcium is a major second messenger in platelet activation,and elevated intracellular calcium leads to hyperactive platelets.Elevated platelet calcium has been documented in hypertension and diabetes;both conditions increase the likelihood of heart attack and stroke. Thus,proper regulation of calcium metabolism in the platelet is extremely important.Plasma membrane Ca2+-ATPase(PMCA)is a major player in platelet calcium metabolism since it provides the only significant route for calcium efflux.In keeping with the important role of calcium in platelet function,PMCA is a highly regulated transporter.In human platelets,PMCA is activated by Ca2+/calmodulin,by cAMP-dependent phosphorylation and by calpain-dependent removal of the inhibitory peptide.It is inhibited by tyrosine phosphorylation and calpain-dependent proteolysis.In addition,the cellular location of PMCA is regulated by a PDZ-domain-dependent interaction with the cytoskeleton during platelet activation.Rapid regulation by phosphorylation results in changes in the rate of platelet activation,whereas calpain-dependent proteolysis and interaction with the cytoskeleton appears to regulate later events such as clot retraction.In hypertension and diabetes,PMCA expression is upregulated while activity is decreased, presumably due to tyrosine phosphorylation.Clearly,a more complete understanding of PMCA function in human platelets could result in the identification of new ways to control platelet function in disease states.展开更多
Solvent extraction of trivalent lanthanides (except for Pm with Cyanex 302 [Bis (2,4,4-trimethylpentyl)monothiophosphinic acid] in heptane was studied at various aqueous pH values, extractant concentrations and differ...Solvent extraction of trivalent lanthanides (except for Pm with Cyanex 302 [Bis (2,4,4-trimethylpentyl)monothiophosphinic acid] in heptane was studied at various aqueous pH values, extractant concentrations and different temperatures. Cyanex 302 shows pretty good behaviours on the extraction of lanthanides, especially when extracting heavy lanthanides. However,purified Cyanex 302 exhibits signi ficantly lower extractability to lanthanides than raw extractant. The roles ofdifferent components ofraw Cyanex 302 were discussed to understand the reason of good extractability of the raw extractant. The lanthanides extraction stoichiometry is discussed on the basis ofexperimental results, which can be expressed as follows:展开更多
The shower shape of n, n^-, p, p^-, K^+, π^+ and photons, generated by JPCIAE code for 5.5 TeV/A ^208pb+^208pb collisions, incident on the ALICE photon spectrometer (PHOS), is analyzed with the principal compone...The shower shape of n, n^-, p, p^-, K^+, π^+ and photons, generated by JPCIAE code for 5.5 TeV/A ^208pb+^208pb collisions, incident on the ALICE photon spectrometer (PHOS), is analyzed with the principal component analysis (PCA) method. The efficiency dependence of purity for the photon discrimination is simulated for the deposited energy ranges 0.5-2 GeV, 2-10 GeV, 10-50 GeV and 50-100 GeV. The result shows that in the energy range of 0.5 to 100 GeV, the efficiency of the photon identification can reach 90% with purity of 90%.展开更多
Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α p...Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate(ATP) and reduced reactive oxygen species(ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators Cyclin D1 and Cyclin B1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated Cyclin D1 but not Cyclin B1, whereas elevation of ROS levels down-regulated Cyclin B1 but not Cyclin D1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of Cyclin D1 and Cyclin B1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle.展开更多
Dimeric estradiol enzyme model (2) was synthesized by etherification of 2,4-bis(N-imidazolylmethyl)-17β-estradiol (1) with 1,3-dibromopropane in the presence of anhydrous K2CO3. Hydrolysis of carboxylates and phospha...Dimeric estradiol enzyme model (2) was synthesized by etherification of 2,4-bis(N-imidazolylmethyl)-17β-estradiol (1) with 1,3-dibromopropane in the presence of anhydrous K2CO3. Hydrolysis of carboxylates and phosphates catalyzed by the model showed Michaelis-Menten kinetic behavior. Hydrophobic interaction between the model and ester accelerates the hydrolysis markedly, rate enhancement of up to 65 and 285 fold, relative to imidazole, is observed.展开更多
In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferat...In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells.Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation,development,immune responses,cell-cycle arrest,DNA damage repair,apoptosis,autophagy,energy metabolism,and senescence.It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies.Transcription is a crucial cellular process that regulates a multitude of physiological functions,which are essential in disease progression and cellular response to therapy.Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α(HIF-α) are key players in carcinogenesis and cellular response to cancer therapies.Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation,in some cases cooperating towards producing the same outcome and in some others mediating opposing effects.It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens,in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance.Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex.In particular,there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 an展开更多
文摘Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The treatments included low-input [unfertilized control without N, P, or K(C0N0)], farmyard manure(FYM)(C1N0), NP(C0NP), NPK(C0NPK), FYM + NP(C1NP), and high-input treatment, FYM + NPK(C1NPK). Grain yield was increased significantly by 74%over the control under the combined application of FYM + NPK. However, under low- and high-input treatments, yield as well as P uptake was maintained at constant levels for 35 years.During the same period, high yield levels and P uptake were maintained under the C0 NP, C0 NPK,and C1 NPK treatments. These are unique characteristics of a tropical flooded ecosystem, which is a self-sustaining system for rice production. The Fe–P fraction was highest compared to the Ca–P and Al–P fractions after 42 years of fertilizer application and was significantly higher under FYM + NPK treatment. The P adsorption capacity of soil was highest under the low-input treatment and lowest under long-term balanced fertilization(FYM + NPK). In contrast, P desorption capacity was highest under NPK and lowest in the control treatment. Long-term balanced fertilization in the form of FYM + NPK for 42 years lowered the bonding energy and adsorption capacity for P in soil but increased its desorption potential, increasing P availability to the plant and leading to higher P uptake and yield maintenance.
文摘Sodium deoxycholate (NaDOC) could induce 1-bromo-4-(bromoacetyl) naphthalene (BBAN) to emit strong room temperature phosphorescence (RTP). Measurements of phosphore- scence spectra, peak intensity and polarization were used to investigate the solubilization of BBAN as a function of NaDOC concentration.
基金the National Natural Science Foundation of China,No.81600747(to YD)a grant from Liaoning Department of Education,No.QNZR2020010(to YD)a grant from 345 Talent Project of Shengjing Hospital(to YD).
文摘The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.
基金Supported partly by the NSFC (10875051,10635020 and 10975061)State Key Development Program of Basic Research of China (2008CB317106)+1 种基金the Key Project of Chinese Ministry of Education (306022 and IRT0624)Program of Introducing Talents of Discipline to Universities of China: B08033
文摘ALICE,A Large Ion Collider Experiment,is dedicated to study the QCD matter at extreme high temperature and density to understand the Quark Gluon Plasma (QGP) and phase transition.High-transversemomentum photons and neutral mesons from the initial hard scattering of partons can be measured with ALICE calorimeters,PHOS (PHOton Spectrometer) and EMCAL (ElectroMagnetic CALorimeter).Combing the additional central tracking detectors,the γ-jet and π 0-jet measurements thus can be accessed.These measurements offer us a sensitive tomography probe of the hot-dense medium generated in the heavy ion collisions.In this paper,high p T and photon physics is discussed and the ALICE calorimeters capabilities of high-transverse-momentum neutral mesons and γ-jet measurements are presented.
文摘Platelets have essential roles in both health and disease. Normal platelet function is required for hemostasis.Inhibition of platelet function in disease or by pharmacological treatment results in bleeding disorders.On the other hand,hyperactive platelets lead to heart attack and stroke.Calcium is a major second messenger in platelet activation,and elevated intracellular calcium leads to hyperactive platelets.Elevated platelet calcium has been documented in hypertension and diabetes;both conditions increase the likelihood of heart attack and stroke. Thus,proper regulation of calcium metabolism in the platelet is extremely important.Plasma membrane Ca2+-ATPase(PMCA)is a major player in platelet calcium metabolism since it provides the only significant route for calcium efflux.In keeping with the important role of calcium in platelet function,PMCA is a highly regulated transporter.In human platelets,PMCA is activated by Ca2+/calmodulin,by cAMP-dependent phosphorylation and by calpain-dependent removal of the inhibitory peptide.It is inhibited by tyrosine phosphorylation and calpain-dependent proteolysis.In addition,the cellular location of PMCA is regulated by a PDZ-domain-dependent interaction with the cytoskeleton during platelet activation.Rapid regulation by phosphorylation results in changes in the rate of platelet activation,whereas calpain-dependent proteolysis and interaction with the cytoskeleton appears to regulate later events such as clot retraction.In hypertension and diabetes,PMCA expression is upregulated while activity is decreased, presumably due to tyrosine phosphorylation.Clearly,a more complete understanding of PMCA function in human platelets could result in the identification of new ways to control platelet function in disease states.
文摘Solvent extraction of trivalent lanthanides (except for Pm with Cyanex 302 [Bis (2,4,4-trimethylpentyl)monothiophosphinic acid] in heptane was studied at various aqueous pH values, extractant concentrations and different temperatures. Cyanex 302 shows pretty good behaviours on the extraction of lanthanides, especially when extracting heavy lanthanides. However,purified Cyanex 302 exhibits signi ficantly lower extractability to lanthanides than raw extractant. The roles ofdifferent components ofraw Cyanex 302 were discussed to understand the reason of good extractability of the raw extractant. The lanthanides extraction stoichiometry is discussed on the basis ofexperimental results, which can be expressed as follows:
基金Supported by National Natural Science Foundation of China (00121140488)
文摘The shower shape of n, n^-, p, p^-, K^+, π^+ and photons, generated by JPCIAE code for 5.5 TeV/A ^208pb+^208pb collisions, incident on the ALICE photon spectrometer (PHOS), is analyzed with the principal component analysis (PCA) method. The efficiency dependence of purity for the photon discrimination is simulated for the deposited energy ranges 0.5-2 GeV, 2-10 GeV, 10-50 GeV and 50-100 GeV. The result shows that in the energy range of 0.5 to 100 GeV, the efficiency of the photon identification can reach 90% with purity of 90%.
基金supported by the National Natural Science Foundation of China(Nos.31160237 and 81360310)the Graduate Student Research Innovation Project of Yunnan University(No.YNUY201455),China
文摘Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate(ATP) and reduced reactive oxygen species(ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators Cyclin D1 and Cyclin B1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated Cyclin D1 but not Cyclin B1, whereas elevation of ROS levels down-regulated Cyclin B1 but not Cyclin D1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of Cyclin D1 and Cyclin B1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle.
基金Project(No. 129402012 and 29632004)supported by the National Natural Science FouDdation of China and the Special Fupds of the State Educational Committee for Doctorate Scientific Research of China
文摘Dimeric estradiol enzyme model (2) was synthesized by etherification of 2,4-bis(N-imidazolylmethyl)-17β-estradiol (1) with 1,3-dibromopropane in the presence of anhydrous K2CO3. Hydrolysis of carboxylates and phosphates catalyzed by the model showed Michaelis-Menten kinetic behavior. Hydrophobic interaction between the model and ester accelerates the hydrolysis markedly, rate enhancement of up to 65 and 285 fold, relative to imidazole, is observed.
文摘In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells.Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation,development,immune responses,cell-cycle arrest,DNA damage repair,apoptosis,autophagy,energy metabolism,and senescence.It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies.Transcription is a crucial cellular process that regulates a multitude of physiological functions,which are essential in disease progression and cellular response to therapy.Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α(HIF-α) are key players in carcinogenesis and cellular response to cancer therapies.Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation,in some cases cooperating towards producing the same outcome and in some others mediating opposing effects.It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens,in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance.Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex.In particular,there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 an