Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRV展开更多
Large-scale crop mapping using remote sensing data is of great significance for agricultural production, food security and the sustainable development of human societies. Winter rapeseed is an important oil crop in Ch...Large-scale crop mapping using remote sensing data is of great significance for agricultural production, food security and the sustainable development of human societies. Winter rapeseed is an important oil crop in China that is mainly distributed in the Yangtze River Valley. Traditional winter rapeseed mapping practices are insufficient since they only use the spectral characteristics during the critical phenological period of winter rapeseed, which are usually limited to a small region and cannot meet the needs of large-scale applications. In this study, a novel phenology-based winter rapeseed index(PWRI) was proposed to map winter rapeseed in the Yangtze River Valley. PWRI expands the date window for distinguishing winter rapeseed and winter wheat, and it has good separability throughout the flowering period of winter rapeseed. PWRI also improves the separability of winter rapeseed and winter wheat, which traditionally have been two easily confused winter crops. A PWRI-based method was applied to the Middle Reaches of the Yangtze River Valley to map winter rapeseed on the Google Earth Engine platform. Time series composited Sentinel-2 data were used to map winter rapeseed with 10 m resolution. The mapping achieved a good result with overall accuracy and kappa coefficients exceeding 92% and 0.85, respectively. The PWRI-based method provides a new solution for high spatial resolution winter rapeseed mapping at a large scale.展开更多
Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines.However,small farms are prevalent in the region,and current satellite-based mapping techniques do not distinguish betwee...Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines.However,small farms are prevalent in the region,and current satellite-based mapping techniques do not distinguish between the two ecosystems at farm scales.This study developed an approach to rapidly map irrigated and rain-fed paddy rice in Iloilo,Philippines at 10 m resolutions using Google Earth Engine.This approach used an ensemble of classifiers based on time-series vegetation indices to produce dry and wet seasonal maps for the entire province.Results showed a predominance of rain-fed rice areas in both seasons,with irrigated rice making up only onefourth of the total rice area.The overall accuracy was achieved at 68%for the dry season and 75%for the wet season based on ground-acquired points and very high-resolution imagery.The two types of paddies were classified at accuracies up to 87%.Furthermore,the land cover maps showed a strong agreement with the municipal statistics.The resultant maps complement current official statistics and demonstrate the prowess of phenology-based mapping to create paddy inventories in a timely manner to inform food security and agricultural policies.展开更多
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRV
基金supported by the National Natural Science Foundation of China (41971371)the National Key Research and Development Program of China (2022YFB3903504)the Fundamental Research Funds for the Central Universities,China (CCNU22JC022)。
文摘Large-scale crop mapping using remote sensing data is of great significance for agricultural production, food security and the sustainable development of human societies. Winter rapeseed is an important oil crop in China that is mainly distributed in the Yangtze River Valley. Traditional winter rapeseed mapping practices are insufficient since they only use the spectral characteristics during the critical phenological period of winter rapeseed, which are usually limited to a small region and cannot meet the needs of large-scale applications. In this study, a novel phenology-based winter rapeseed index(PWRI) was proposed to map winter rapeseed in the Yangtze River Valley. PWRI expands the date window for distinguishing winter rapeseed and winter wheat, and it has good separability throughout the flowering period of winter rapeseed. PWRI also improves the separability of winter rapeseed and winter wheat, which traditionally have been two easily confused winter crops. A PWRI-based method was applied to the Middle Reaches of the Yangtze River Valley to map winter rapeseed on the Google Earth Engine platform. Time series composited Sentinel-2 data were used to map winter rapeseed with 10 m resolution. The mapping achieved a good result with overall accuracy and kappa coefficients exceeding 92% and 0.85, respectively. The PWRI-based method provides a new solution for high spatial resolution winter rapeseed mapping at a large scale.
基金Ministry of Foreign Affairs and Trade,New ZealandUniversity of Auckland.
文摘Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines.However,small farms are prevalent in the region,and current satellite-based mapping techniques do not distinguish between the two ecosystems at farm scales.This study developed an approach to rapidly map irrigated and rain-fed paddy rice in Iloilo,Philippines at 10 m resolutions using Google Earth Engine.This approach used an ensemble of classifiers based on time-series vegetation indices to produce dry and wet seasonal maps for the entire province.Results showed a predominance of rain-fed rice areas in both seasons,with irrigated rice making up only onefourth of the total rice area.The overall accuracy was achieved at 68%for the dry season and 75%for the wet season based on ground-acquired points and very high-resolution imagery.The two types of paddies were classified at accuracies up to 87%.Furthermore,the land cover maps showed a strong agreement with the municipal statistics.The resultant maps complement current official statistics and demonstrate the prowess of phenology-based mapping to create paddy inventories in a timely manner to inform food security and agricultural policies.