A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
微波成像技术在雷达、制导、引信、安防、医疗等领域有极大的应用需求,本文研究了基于透镜成像原理的微波阵列快速成像技术,通过分析透镜成像系统的成像特性以及成像算法,提出了一种适用于阵列成像的快速算法,该方法仅需要执行一次IFFT(...微波成像技术在雷达、制导、引信、安防、医疗等领域有极大的应用需求,本文研究了基于透镜成像原理的微波阵列快速成像技术,通过分析透镜成像系统的成像特性以及成像算法,提出了一种适用于阵列成像的快速算法,该方法仅需要执行一次IFFT(Inverse Fast Fourier Transform)运算即可获得目标的像.所提出的新方法降低了算法复杂度,具有较快的运算速度.最后进行了成像验证,采用微波暗室测试散射源近场数据,通过快速成像算法计算目标的像,实验结果证明新算法具有较好的成像效果.展开更多
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
文摘微波成像技术在雷达、制导、引信、安防、医疗等领域有极大的应用需求,本文研究了基于透镜成像原理的微波阵列快速成像技术,通过分析透镜成像系统的成像特性以及成像算法,提出了一种适用于阵列成像的快速算法,该方法仅需要执行一次IFFT(Inverse Fast Fourier Transform)运算即可获得目标的像.所提出的新方法降低了算法复杂度,具有较快的运算速度.最后进行了成像验证,采用微波暗室测试散射源近场数据,通过快速成像算法计算目标的像,实验结果证明新算法具有较好的成像效果.