Telecloning and its reverse process, referred to as remote quantum-information concentration (RQIC), have been attracting considerable interest because of their potential applications in quantum-information processing...Telecloning and its reverse process, referred to as remote quantum-information concentration (RQIC), have been attracting considerable interest because of their potential applications in quantum-information processing. The previous RQIC protocols were focused on the reverse process of the optimal universal telecloning. We here study the reverse process of ancilla-free phase-covariant telecloning (AFPCT). It is shown that the quantum information originally distributed into two spatially separated qubits from a single qubit via the optimal AFPCT procedure can be remotely concentrated back to a single qubit with a certain probability by using an asymmetric W state as the quantum channel.展开更多
文摘Telecloning and its reverse process, referred to as remote quantum-information concentration (RQIC), have been attracting considerable interest because of their potential applications in quantum-information processing. The previous RQIC protocols were focused on the reverse process of the optimal universal telecloning. We here study the reverse process of ancilla-free phase-covariant telecloning (AFPCT). It is shown that the quantum information originally distributed into two spatially separated qubits from a single qubit via the optimal AFPCT procedure can be remotely concentrated back to a single qubit with a certain probability by using an asymmetric W state as the quantum channel.