期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Three‐terminal perovskite/integratedbackcontactsilicon tandem solar cells under low light intensity conditions 被引量:5
1
作者 Hiroyuki Kanda Valentin Dan Mihailetchi +11 位作者 Marie-Estelle Gueunier-Farret Jean-Paul Kleider Zakaria Djebbour Jose Alvarez Baranek Philippe Olindo Isabella Malte R.Vogt Rudi Santbergen Philip Schulz Fiala Peter Mohammad K.Nazeeruddin James P.Connolly 《Interdisciplinary Materials》 2022年第1期148-156,共9页
The current climate and energy crisis urgently needs solar cells with efficiencies above the 29% single junction efficiency bottleneck.Silicon/perovskite tandem solar cells are a solution,which is attracting much atte... The current climate and energy crisis urgently needs solar cells with efficiencies above the 29% single junction efficiency bottleneck.Silicon/perovskite tandem solar cells are a solution,which is attracting much attention.While silicon/perovskite tandem cells in 2-terminal and 4-terminal configurations are well documented,the three-terminal concept is still in its infancy.It has significant advantages under low light intensities as opposed to concentrated sunlight,which is the critical factor in designing tandem solar cells for low-cost terrestrial applications.This study pre-sents novel studies of the sub-cell performance of the first three-terminal perovskite/silicon selective band offset barrier tandem solar cells fabricated in an ongoing research project.This study focuses on short circuit current and operating voltages of the subcells under light intensities of one sun and below.Lifetime studies show that the perovskite bulk carrier lifetime is insensitive to illumination,while the silicon cell's lifetime decreases with decreasing light intensity.The combination of perovskite and silicon in the 3T perovskite-silicon tandem therefore reduces the sensitivity of V_(OC) to light intensity and maintains a relatively higher V_(OC) down to low light intensities,whereas silicon single-junction cells show a marked decrease.This technological advantage is proposed as a novel advantage of three-terminal perovkite/silicon solar cells for low light intensities of one sun or less. 展开更多
关键词 low light intensity conditions perovskite solar cells tandem solar cells three-terminal perovskite/si solar cells
原文传递
Perovskite/Si tandem solar cells: Fundamentals, advances,challenges, and novel applications 被引量:4
2
作者 Yuanhang Cheng Liming Ding 《SusMat》 2021年第3期324-344,共21页
The world record device efficiency of single-junction solar cells based on organic–inorganic hybrid perovskites has reached 25.5%.Further improvement in device power conversion efficiency(PCE)can be achieved by eithe... The world record device efficiency of single-junction solar cells based on organic–inorganic hybrid perovskites has reached 25.5%.Further improvement in device power conversion efficiency(PCE)can be achieved by either optimizing perovskite films or designing novel device structures such as perovskite/Si tandem solar cells.With the marriage of perovskite and Si solar cells,a tandem device configuration is able to achieve a PCE exceeding the Shockley–Queisser limit of single-junction solar cells by enhancing the usage of solar spectrum.After several years of development,the highest PCE of the perovskite/Si tandem cell has reached 29.5%,which is higher than that of perovskite-and Si-based singlejunction cells.Here,in this review,we will(1)first discuss the device structure and fundamental working principle of both two-terminal(2T)and four-terminal(4T)perovskite/Si tandem solar cells;(2)second,provide a brief overview of the advances of perovskite/Si tandem solar cells regarding the development of interconnection layer,perovskite active layer,tandem device structure,and lightmanagement strategies;(3)third,discuss the challenges and opportunities for further developing perovskite/Si tandem solar cells.This review article,on the one hand,provides a comprehensive understanding to readers on the development of perovskite/Si tandems.On the other hand,it proposes various novel applications that may bring such tandems into the market in a near future. 展开更多
关键词 2-terminal 4-terminal innovative applications interconnection layer optical losses perovskite bandgap engineering perovskite/si tandem solar cells
原文传递
Perovskite tandem solar cells with improved efficiency and stability 被引量:1
3
作者 Zhengjie Zhu Kaitian Mao Jixian Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期219-232,共14页
Tandem solar cells represent an attractive technology to overcome the Shockley-Queisser limit of single-junction cells.Recently,wide-bandgap metal halide perovskites are paired with complementary bandgap photovoltaic ... Tandem solar cells represent an attractive technology to overcome the Shockley-Queisser limit of single-junction cells.Recently,wide-bandgap metal halide perovskites are paired with complementary bandgap photovoltaic technologies(such as silicon,CIGS,and low-bandgap perovskites) in tandem architectures,enabling a pathway to achieve industry goals of pushing power-conversion-efficiency(PCE) over 30% at low cost.In this review of perovskite tandems,we aim to present an overview of their recent progress on efficiency and stability enhancement.We start by comparing 2-terminal and 4-terminal tandems,from the perspective of technical and cost barriers.We then focus on 2-terminal tandems and summarize the collective efforts on improving their performance,fabrication processing,and operational stability.We also present the comprehensive progress in perovskite/Si, perovskite/CIGS,and perovskite/perovskite monolithic tandems,alo ng with advanced technology for subcell diagnosis.We highlight that an in-depth understanding of the mobile ion character of perovskites and applying consensus stability tests(such as the extended ISOS protocol for perovskite) under light,heating,and voltage bias are critically important for improving perovskite tandems toward 25-year outdoor operation lifetime. 展开更多
关键词 Tandem solar cells perovskite/si perovskite/CIGS perovskite/perovskite perovskite solar cells
下载PDF
Optical simulation of CsPbI_(3)/TOPCon tandem solar cells with advanced light management 被引量:3
4
作者 Min Yue Yan Wang +1 位作者 Hui-Li Liang Zeng-Xia Mei 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期709-717,共9页
Monolithic perovskite/Si tandem solar cells(TSCs)have experienced rapid development in recent years,demonstrating its potential to exceed the Shockley-Queisser limit of single junction Si solar cells.Unlike typical or... Monolithic perovskite/Si tandem solar cells(TSCs)have experienced rapid development in recent years,demonstrating its potential to exceed the Shockley-Queisser limit of single junction Si solar cells.Unlike typical organic-inorganic hybrid perovskite/silicon heterojunction TSCs,here we propose CsPbI_(3)/TOPCon TSC,which is a promising architecture in consideration of its pleasurable thermal stability and good compatibility with current PERC production lines.The optical performance of CsPbI_(3)/TOPCon TSCs is simulated by the combination of ray-tracing method and transfer matrix method.The light management of the CsPbI_(3)/TOPCon TSC begins with the optimization of the surface texture on Si subcell,indicating that a bifacial inverted pyramid with a small bottom angle of rear-side enables a further minimization of the optical losses.Current matching between the subcells,as well as the parasitic absorption loss from the front transparent conductive oxide,is analyzed and discussed in detail.Finally,an optimized configuration of CsPbI_(3)/TOPCon TSC with a31.78%power conversion efficiency is proposed.This work provides a practical guidance for approaching high-efficiency perovskite/Si TSCs. 展开更多
关键词 perovskite/si tandem solar cells siMULATION TOPCon CsPbI_(3)
下载PDF
Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage 被引量:2
5
作者 Bingbing Chen Pengyang Wang +8 位作者 Renjie Li Ningyu Ren Yongliang Chen Wei Han Lingling Yan Qian Huang Dekun Zhang Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期461-467,I0011,共8页
Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the ... Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices. 展开更多
关键词 Lithium chloride additive Electron transport layer High efficiency perovskite/si tandem solar cells
下载PDF
Monolithic perovskite/c-Si tandem solar cell:Progress on numerical simulation
6
作者 Chao Gao Daxue Du Wenzhong Shen 《Carbon Neutrality》 2022年第1期507-522,共16页
Perovskite/c-Si tandem solar cell(TSC)has gradually become the hottest research topic in photovoltaic field for global carbon neutrality.Here we review the recent progress of numerical simulation studies of monolithic... Perovskite/c-Si tandem solar cell(TSC)has gradually become the hottest research topic in photovoltaic field for global carbon neutrality.Here we review the recent progress of numerical simulation studies of monolithic perovskite/c-Si TSC in terms of the methodology,light harvesting management,and energy yield aspects.It is summarized that the integration of physical fundamentals of the methodology,optimization of modeling and parameter correction can bring simulation results closer to experiments.Based on theoretical analysis of light harvesting management,we have demonstrated that textures can enhance light trapping capability and resonance absorption.The advances of bifacial perovskite/c-Si TSC have been particularly reviewed in simulation calibration(current matching loss approach)and low-cost strategy(ultrathin Si).Finally,through the energy yield analysis of the monofacial and bifacial TSC,we have innovatively proposed that spectral variables,effective albedo and top-cell bandgap should be integrated into cell preparation and module installation.This in-depth numerical simulation review provides a guidance for experimental preparation of low-cost and high-efficiency perovskite/c-Si TSC. 展开更多
关键词 perovskite/c-si Numerical simulation Methodology Optical property Energy yield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部